diff options
author | tlatorre <tlatorre@uchicago.edu> | 2018-08-27 10:59:31 -0500 |
---|---|---|
committer | tlatorre <tlatorre@uchicago.edu> | 2018-08-27 10:59:31 -0500 |
commit | a84cfbe584580f08ca0a88f176cb49cdf801665e (patch) | |
tree | 9e51ec936b02e6bcdbe48fce43c1a70fcaf1b63e /src/scattering.c | |
parent | 779266ec72a5c76ee52043ab3ae17479ba6a9788 (diff) | |
download | sddm-a84cfbe584580f08ca0a88f176cb49cdf801665e.tar.gz sddm-a84cfbe584580f08ca0a88f176cb49cdf801665e.tar.bz2 sddm-a84cfbe584580f08ca0a88f176cb49cdf801665e.zip |
fix how multiple Coulomb scattering is treated
Previously I had been assuming that a particle undergoing many small angle
Coulomb scatters had a track direction whose polar angle was a Gaussian.
However, this was just due to a misunderstanding of the PDG section "Multiple
scattering through small angles" in the "Passage of particles through matter"
article. In fact, what is described by a Gaussian is the polar angle projected
onto a plane. Therefore the distribution of the polar angle is actually:
(1/(sqrt(2*pi)*theta0**2))*theta*exp(-theta**2/(2*theta0))
This commit updates the code in scattering.c to correctly calculate the
probability that a photon is emitted at a particular angle. I also updated
test-likelihood.c to simulate a track correctly.
Diffstat (limited to 'src/scattering.c')
-rw-r--r-- | src/scattering.c | 9 |
1 files changed, 3 insertions, 6 deletions
diff --git a/src/scattering.c b/src/scattering.c index a1a63df..66e8398 100644 --- a/src/scattering.c +++ b/src/scattering.c @@ -40,12 +40,9 @@ static double prob_scatter(double wavelength, void *params) index = get_index_snoman_d2o(wavelength); - delta = (1.0/index - beta_cos_theta)/(2*beta_sin_theta_theta0); + delta = (1.0/index - beta_cos_theta)/beta_sin_theta_theta0; - /* FIXME: ignore GSL error for underflow here. */ - if (delta*delta > 500) return 0.0; - else if (delta*delta == 0.0) return INFINITY; - return qe*exp(-delta*delta)*gsl_sf_bessel_K0(delta*delta)/pow(wavelength,2)*1e7/(4*M_PI*M_PI); + return qe*exp(-pow(delta,2)/2.0)/pow(wavelength,2)*1e7/sqrt(2*M_PI); } void init_interpolation(void) @@ -106,7 +103,7 @@ double get_probability(double beta, double cos_theta, double theta0) * we are going to square it everywhere. */ sin_theta = fabs(sin(acos(cos_theta))); - return gsl_spline2d_eval(spline, beta*cos_theta, beta*sin_theta*theta0, xacc, yacc)/sin_theta; + return gsl_spline2d_eval(spline, beta*cos_theta, beta*sin_theta*theta0, xacc, yacc)/(theta0*sin_theta); } void free_interpolation(void) |