aboutsummaryrefslogtreecommitdiff
path: root/src/likelihood.c
diff options
context:
space:
mode:
authortlatorre <tlatorre@uchicago.edu>2018-09-26 08:59:57 -0500
committertlatorre <tlatorre@uchicago.edu>2018-09-26 08:59:57 -0500
commite5c270c8c442136c7fd44751e1ccac887f49bd06 (patch)
tree854259150133a810c68808e435eae45f30eb3378 /src/likelihood.c
parent8bdcdbc04913df2d0d4ce4d1d8d85c8da2185e59 (diff)
downloadsddm-e5c270c8c442136c7fd44751e1ccac887f49bd06.tar.gz
sddm-e5c270c8c442136c7fd44751e1ccac887f49bd06.tar.bz2
sddm-e5c270c8c442136c7fd44751e1ccac887f49bd06.zip
speed up fast likelihood calculation
This commit speeds up the fast likelihood calculation by avoiding calls to trigonometric functions where possible. Specifically we calculate sin(a) = sqrt(1-pow(cos(a),2)); instead of sin(a) = sin(acos(cos(a)));
Diffstat (limited to 'src/likelihood.c')
-rw-r--r--src/likelihood.c12
1 files changed, 7 insertions, 5 deletions
diff --git a/src/likelihood.c b/src/likelihood.c
index ef6622d..f78eee8 100644
--- a/src/likelihood.c
+++ b/src/likelihood.c
@@ -146,7 +146,7 @@ double get_total_charge_approx(double T0, double *pos, double *dir, muon_energy
*
* `smax` is currently calculated as the point where the particle velocity
* drops to 0.8 times the speed of light. */
- double pmt_dir[3], tmp[3], R, cos_theta, theta, x, z, s, a, b, beta, E, p, T, omega, theta_cerenkov, n_d2o, n_h2o, sin_theta, E0, p0, beta0, f, cos_theta_pmt, absorption_length_h2o, absorption_length_d2o, l_h2o, l_d2o, wavelength0;
+ double pmt_dir[3], tmp[3], R, cos_theta, theta, x, z, s, a, b, beta, E, p, T, omega, cos_theta_cerenkov, theta_cerenkov, n_d2o, n_h2o, sin_theta, E0, p0, beta0, f, cos_theta_pmt, absorption_length_h2o, absorption_length_d2o, l_h2o, l_d2o, wavelength0;
/* Calculate beta at the start of the track. */
E0 = T0 + MUON_MASS;
@@ -170,7 +170,8 @@ double get_total_charge_approx(double T0, double *pos, double *dir, muon_energy
wavelength0 = 400.0;
n_d2o = get_index_snoman_d2o(wavelength0);
n_h2o = get_index_snoman_h2o(wavelength0);
- theta_cerenkov = acos(1/(n_d2o*beta0));
+ cos_theta_cerenkov = 1/(n_d2o*beta0);
+ theta_cerenkov = acos(cos_theta_cerenkov);
/* Now, we compute the distance along the track where the PMT is at the
* Cerenkov angle.
@@ -178,7 +179,7 @@ double get_total_charge_approx(double T0, double *pos, double *dir, muon_energy
* Note: This formula comes from using the "Law of sines" where the three
* vertices of the triangle are the starting position of the track, the
* point along the track that we want to find, and the PMT position. */
- s = R*sin(theta_cerenkov-theta)/sin(theta_cerenkov);
+ s = R*sin(theta_cerenkov-theta)/sqrt(1-pow(cos_theta_cerenkov,2));
/* Make sure that the point is somewhere along the track between 0 and
* `smax`. */
@@ -203,7 +204,7 @@ double get_total_charge_approx(double T0, double *pos, double *dir, muon_energy
z = R*cos_theta;
/* `x` is the perpendicular distance from the PMT position to the track. */
- x = R*fabs(sin(theta));
+ x = R*sqrt(1-pow(cos_theta,2));
/* `b` is the second coefficient in the Taylor expansion. */
b = (s-z)/a;
@@ -233,7 +234,8 @@ double get_total_charge_approx(double T0, double *pos, double *dir, muon_energy
/* Calculate the sine of the angle between the track direction and the PMT
* at the position `s` along the track. */
- sin_theta = fabs(sin(acos(DOT(dir,pmt_dir)/NORM(pmt_dir))));
+ cos_theta = DOT(dir,pmt_dir)/NORM(pmt_dir);
+ sin_theta = sqrt(1-pow(cos_theta,2));
/* Get the solid angle of the PMT at the position `s` along the track. */
omega = get_solid_angle_approx(tmp,pmts[i].pos,pmts[i].normal,PMT_RADIUS);