aboutsummaryrefslogtreecommitdiff
path: root/src/likelihood.c
diff options
context:
space:
mode:
authortlatorre <tlatorre@uchicago.edu>2018-12-03 09:54:49 -0600
committertlatorre <tlatorre@uchicago.edu>2018-12-03 09:54:49 -0600
commit3c77f5827644971fb0697a23120a8d3d3ae92e1f (patch)
tree67916a86acaa37e029cabeaaecbaadbd7989398b /src/likelihood.c
parentab1b77d66c2a9a75089536ef2b1f2fb995151f34 (diff)
downloadsddm-3c77f5827644971fb0697a23120a8d3d3ae92e1f.tar.gz
sddm-3c77f5827644971fb0697a23120a8d3d3ae92e1f.tar.bz2
sddm-3c77f5827644971fb0697a23120a8d3d3ae92e1f.zip
add a goodness of fit parameter psi to the fit
Diffstat (limited to 'src/likelihood.c')
-rw-r--r--src/likelihood.c111
1 files changed, 106 insertions, 5 deletions
diff --git a/src/likelihood.c b/src/likelihood.c
index 0e78800..64f28d4 100644
--- a/src/likelihood.c
+++ b/src/likelihood.c
@@ -720,7 +720,104 @@ static double getKineticEnergy(double x, void *p)
return particle_get_energy(x, (particle *) p);
}
-double nll(event *ev, vertex *v, size_t n, double dx, double dx_shower, int fast)
+double nll_best(event *ev)
+{
+ /* Returns the negative log likelihood of the "best hypothesis" for the event `ev`.
+ *
+ * By "best hypothesis" I mean we restrict the model to assign a single
+ * mean number of PE for each PMT in the event assuming that the number of
+ * PE hitting each PMT is poisson distributed. In addition, the model picks
+ * a single time for the light to arrive with the PDF being given by a sum
+ * of dark noise and a Gaussian around this time with a width equal to the
+ * single PE transit time spread.
+ *
+ * This calculation is intended to be used as a goodness of fit test for
+ * the fitter by computing a likelihood ratio between the best fit
+ * hypothesis and this ideal case. See Chapter 9 in Jayne's "Probability
+ * Theory: The Logic of Science" for more details. */
+ size_t i, j, nhit, maxj;
+ static double logp[MAX_PE], nll[MAX_PMTS], mu[MAX_PMTS], ts[MAX_PMTS], ts_shower, ts_sigma, mu_shower;
+ double log_mu, max_logp, mu_noise, mu_indirect_total, min_ratio;
+
+ mu_noise = DARK_RATE*GTVALID*1e-9;
+
+ /* Compute the "best" number of expected PE for each PMT. */
+ for (i = 0; i < MAX_PMTS; i++) {
+ if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL) continue;
+
+ if (!ev->pmt_hits[i].hit) {
+ /* If the PMT wasn't hit we assume the expected number of PE just
+ * come from noise hits. */
+ mu[i] = mu_noise;
+ continue;
+ }
+
+ /* Technically we should be computing:
+ *
+ * mu[i] = max(p(q|mu))
+ *
+ * where by max I mean we find the expected number of PE which
+ * maximizes p(q|mu). However, I don't know of any easy analytical
+ * solution to this. So instead we just compute the number of PE which
+ * maximizes p(q|n). */
+ for (j = 1; j < MAX_PE; j++) {
+ logp[j] = get_log_pq(ev->pmt_hits[i].qhs,j);
+
+ if (j == 1 || logp[j] > max_logp) {
+ maxj = j;
+ max_logp = logp[j];
+ }
+ }
+
+ mu[i] = maxj;
+ ts[i] = ev->pmt_hits[i].t;
+ }
+
+ mu_shower = 0;
+ ts_shower = 0;
+ ts_sigma = PMT_TTS;
+
+ mu_indirect_total = 0.0;
+
+ min_ratio = MIN_RATIO;
+
+ /* Now, we actually compute the negative log likelihood for the best
+ * hypothesis.
+ *
+ * Currently this calculation is identical to the one in nll() so it should
+ * probably be made into a function. */
+ nhit = 0;
+ for (i = 0; i < MAX_PMTS; i++) {
+ if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL) continue;
+
+ log_mu = log(mu[i]);
+
+ if (ev->pmt_hits[i].hit) {
+ for (j = 1; j < MAX_PE; j++) {
+ logp[j] = get_log_pq(ev->pmt_hits[i].qhs,j) - mu[i] + j*log_mu - lnfact(j) + log_pt(ev->pmt_hits[i].t, j, mu_noise, mu_indirect_total, &mu[i], &mu_shower, 1, &ts[i], &ts_shower, ts[i], PMT_TTS, &ts_sigma);
+
+ if (j == 1 || logp[j] > max_logp) max_logp = logp[j];
+
+ if (logp[j] - max_logp < min_ratio*ln(10)) {
+ j++;
+ break;
+ }
+ }
+
+ nll[nhit++] = -logsumexp(logp+1, j-1);
+ } else {
+ logp[0] = -mu[i];
+ for (j = 1; j < MAX_PE_NO_HIT; j++) {
+ logp[j] = get_log_pmiss(j) - mu[i] + j*log_mu - lnfact(j);
+ }
+ nll[nhit++] = -logsumexp(logp, MAX_PE_NO_HIT);
+ }
+ }
+
+ return kahan_sum(nll,nhit);
+}
+
+double nll(event *ev, vertex *v, size_t n, double dx, double dx_shower, int fast, int charge_only)
{
/* Returns the negative log likelihood for event `ev` given a particle with
* id `id`, initial kinetic energy `T0`, position `pos`, direction `dir` and
@@ -959,10 +1056,14 @@ double nll(event *ev, vertex *v, size_t n, double dx, double dx_shower, int fast
if (ev->pmt_hits[i].hit) {
for (j = 1; j < MAX_PE; j++) {
- if (fast)
- logp[j] = get_log_pq(ev->pmt_hits[i].qhs,j) - mu[i] + j*log_mu - lnfact(j) + log_pt_fast;
- else
- logp[j] = get_log_pq(ev->pmt_hits[i].qhs,j) - mu[i] + j*log_mu - lnfact(j) + log_pt(ev->pmt_hits[i].t, j, mu_noise, mu_indirect_total, &mu_direct[i][0], &mu_shower[i][0], n, &ts[i][0], &ts_shower[i][0], ts[i][0], PMT_TTS, &ts_sigma[i][0]);
+ logp[j] = get_log_pq(ev->pmt_hits[i].qhs,j) - mu[i] + j*log_mu - lnfact(j);
+
+ if (!charge_only) {
+ if (fast)
+ logp[j] += log_pt_fast;
+ else
+ logp[j] += log_pt(ev->pmt_hits[i].t, j, mu_noise, mu_indirect_total, &mu_direct[i][0], &mu_shower[i][0], n, &ts[i][0], &ts_shower[i][0], ts[i][0], PMT_TTS, &ts_sigma[i][0]);
+ }
if (j == 1 || logp[j] > max_logp) max_logp = logp[j];