aboutsummaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
authortlatorre <tlatorre@uchicago.edu>2020-12-21 02:22:55 -0600
committertlatorre <tlatorre@uchicago.edu>2020-12-21 02:22:55 -0600
commit8353ec89afffc568f7160cd0c0e97cf458f89368 (patch)
treef78850f5c532a5a5fdd9d5a59e6a7b573f0acf6f /doc
parent51e7b24254ae8261c455c5d8fe47544a29576c2c (diff)
downloadsddm-8353ec89afffc568f7160cd0c0e97cf458f89368.tar.gz
sddm-8353ec89afffc568f7160cd0c0e97cf458f89368.tar.bz2
sddm-8353ec89afffc568f7160cd0c0e97cf458f89368.zip
use correct bins when calculation threshold
Diffstat (limited to 'doc')
0 files changed, 0 insertions, 0 deletions
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.

from __future__ import print_function, division

if __name__ == '__main__':
    import argparse
    import numpy as np
    import h5py
    import pandas as pd
    import itertools
    from sddm import IDP_E_MINUS, IDP_MU_MINUS, SNOMAN_MASS
    from sddm.plot import plot_hist, plot_legend, get_stats, despine, iqr_std_err, iqr_std, quantile_error, q90_err, q90, median, median_err, std_err
    from sddm import setup_matplotlib

    parser = argparse.ArgumentParser("plot fit results")
    parser.add_argument("filenames", nargs='+', help="input files")
    parser.add_argument("-o", "--output", default=None, help="output file")
    parser.add_argument("--save", action="store_true", default=False, help="save plots")
    args = parser.parse_args()

    setup_matplotlib(args.save)

    import matplotlib.pyplot as plt

    # Read in all the data.
    #
    # Note: We have to add the filename as a column to each dataset since this
    # script is used to analyze MC data which all has the same run number.
    ev = pd.concat([pd.read_hdf(filename, "ev").assign(filename=filename) for filename in args.filenames],ignore_index=True)
    fits = pd.concat([pd.read_hdf(filename, "fits").assign(filename=filename) for filename in args.filenames],ignore_index=True)
    mcgn = pd.concat([pd.read_hdf(filename, "mcgn").assign(filename=filename) for filename in args.filenames],ignore_index=True)

    # get rid of 2nd events like Michel electrons
    ev = ev.sort_values(['run','gtid']).groupby(['filename','evn'],as_index=False).nth(0)

    # Now, we merge all three datasets together to produce a single
    # dataframe. To do so, we join the ev dataframe with the mcgn frame
    # on the evn column, and then join with the fits on the run and
    # gtid columns.
    #
    # At the end we will have a single dataframe with one row for each
    # fit, i.e. it will look like:
    #
    # >>> data
    #   run   gtid nhit, ... mcgn_x, mcgn_y, mcgn_z, ..., fit_id1, fit_x, fit_y, fit_z, ...
    #
    # Before merging, we prefix the primary seed track table with mcgn_
    # and the fit table with fit_ just to make things easier.

    # Prefix track and fit frames
    mcgn = mcgn.add_prefix("mcgn_")
    fits = fits.add_prefix("fit_")

    # merge ev and mcgn on evn
    data = ev.merge(mcgn,left_on=['filename','evn'],right_on=['mcgn_filename','mcgn_evn'])
    # merge data and fits on run and gtid
    data = data.merge(fits,left_on=['filename','run','gtid'],right_on=['fit_filename','fit_run','fit_gtid'])

    # For this script, we only want the single particle fit results
    data = data[(data.fit_id2 == 0) & (data.fit_id3 == 0)]

    # Select only the best fit for a given run, gtid, and particle
    # combo
    data = data.sort_values('fit_fmin').groupby(['filename','run','gtid','fit_id1','fit_id2','fit_id3'],as_index=False).nth(0).reset_index(level=0,drop=True)

    # calculate true kinetic energy
    mass = [SNOMAN_MASS[id] for id in data['mcgn_id'].values]
    data['T'] = data['mcgn_energy'].values - mass
    data['dx'] = data['fit_x'].values - data['mcgn_x'].values
    data['dy'] = data['fit_y'].values - data['mcgn_y'].values
    data['dz'] = data['fit_z'].values - data['mcgn_z'].values
    data['dT'] = data['fit_energy1'].values - data['T'].values

    true_dir = np.dstack((data['mcgn_dirx'],data['mcgn_diry'],data['mcgn_dirz'])).squeeze()
    dir = np.dstack((np.sin(data['fit_theta1'])*np.cos(data['fit_phi1']),
                     np.sin(data['fit_theta1'])*np.sin(data['fit_phi1']),
                     np.cos(data['fit_theta1']))).squeeze()

    data['theta'] = np.degrees(np.arccos((true_dir*dir).sum(axis=-1)))


    # only select fits which have at least 2 fits
    data = data.groupby(['filename','run','gtid']).filter(lambda x: len(x) > 1)
    data_true = data[data['fit_id1'] == data['mcgn_id']]
    data_e = data[data['fit_id1'] == IDP_E_MINUS]
    data_mu = data[data['fit_id1'] == IDP_MU_MINUS]

    data_true = data_true.set_index(['filename','run','gtid'])
    data_e = data_e.set_index(['filename','run','gtid'])
    data_mu = data_mu.set_index(['filename','run','gtid'])

    data_true['ratio'] = data_mu['fit_fmin']-data_e['fit_fmin']
    data_true['te'] = data_e['fit_time']
    data_true['tm'] = data_mu['fit_time']
    data_true['Te'] = data_e['fit_energy1']

    # 100 bins between 50 MeV and 1 GeV
    bins = np.arange(50,1000,100)

    T = (bins[1:] + bins[:-1])/2

    markers = itertools.cycle(('o', 'v')) 

    fig3, ax3 = plt.subplots(3,1,num=3,sharex=True)
    fig4, ax4 = plt.subplots(3,1,num=4,sharex=True)

    output = pd.DataFrame({'T':T})

    for id in [IDP_E_MINUS, IDP_MU_MINUS]:
        events = data_true[data_true['mcgn_id'] == id]

        pd_bins = pd.cut(events['T'],bins)

        dT = events.groupby(pd_bins)['dT'].agg(['mean','sem','std',std_err,median,median_err,iqr_std,iqr_std_err])
        dx = events.groupby(pd_bins)['dx'].agg(['mean','sem','std',std_err,median,median_err,iqr_std,iqr_std_err])
        dy = events.groupby(pd_bins)['dy'].agg(['mean','sem','std',std_err,median,median_err,iqr_std,iqr_std_err])
        dz = events.groupby(pd_bins)['dz'].agg(['mean','sem','std',std_err,median,median_err,iqr_std,iqr_std_err])
        theta = events.groupby(pd_bins)['theta'].agg(['mean','sem','std',std_err,median,median_err,iqr_std,iqr_std_err,q90,q90_err])

        label = 'Muon' if id == IDP_MU_MINUS else 'Electron'

        marker = next(markers)

        plt.figure(1)
        plt.errorbar(T,dT['median']*100/T,yerr=dT['median_err']*100/T,fmt=marker,label=label)

        plt.figure(2)
        plt.errorbar(T,dT['iqr_std']*100/T,yerr=dT['iqr_std_err']*100/T,fmt=marker,label=label)

        ax3[0].errorbar(T,dx['median'],yerr=dx['median_err'],fmt=marker,label=label)
        ax3[1].errorbar(T,dy['median'],yerr=dy['median_err'],fmt=marker,label=label)
        ax3[2].errorbar(T,dz['median'],yerr=dz['median_err'],fmt=marker,label=label)

        if id == IDP_E_MINUS:
            output['e_bias'] = (dT['median']/T).values
        else:
            output['u_bias'] = (dT['median']/T).values

        ax4[0].errorbar(T,dx['iqr_std'],yerr=dx['iqr_std_err'],fmt=marker,label=label)
        ax4[1].errorbar(T,dy['iqr_std'],yerr=dy['iqr_std_err'],fmt=marker,label=label)
        ax4[2].errorbar(T,dz['iqr_std'],yerr=dz['iqr_std_err'],fmt=marker,label=label)

        plt.figure(5)
        plt.errorbar(T,theta['std'],yerr=theta['std_err'],fmt=marker,label=label)

        plt.figure(6)
        plt.scatter(events['Te'],events['ratio'],marker=marker,label=label)

    if args.output:
        with h5py.File(args.output,"w") as f:
            f.create_dataset('energy_bias',data=output.to_records())

    fig = plt.figure(1)
    despine(fig,trim=True)
    plt.xlabel("Kinetic Energy (MeV)")
    plt.ylabel(r"Energy bias (\%)")
    plt.legend()
    plt.tight_layout()

    fig = plt.figure(2)
    despine(fig,trim=True)
    plt.xlabel("Kinetic Energy (MeV)")
    plt.ylabel(r"Energy resolution (\%)")
    plt.legend()
    plt.tight_layout()

    ax3[0].set_ylabel("X")
    ax3[0].set_ylim((-5,5))
    ax3[1].set_ylabel("Y")
    ax3[1].set_ylim((-5,5))
    ax3[2].set_xlabel("Kinetic Energy (MeV)")
    ax3[2].set_ylabel("Z")
    ax3[2].set_ylim((-5,5))
    despine(ax=ax3[0],trim=True)
    despine(ax=ax3[1],trim=True)
    despine(ax=ax3[2],trim=True)
    h,l = ax3[0].get_legend_handles_labels()
    fig3.legend(h,l,loc='upper right')
    fig3.subplots_adjust(right=0.75)
    fig3.tight_layout()
    fig3.subplots_adjust(top=0.9)

    ax4[0].set_ylabel("X")
    ax4[0].set_ylim((0,ax4[0].get_ylim()[1]))
    ax4[1].set_ylabel("Y")
    ax4[1].set_ylim((0,ax4[1].get_ylim()[1]))
    ax4[2].set_xlabel("Kinetic Energy (MeV)")
    ax4[2].set_ylabel("Z")
    ax4[2].set_ylim((0,ax4[2].get_ylim()[1]))
    despine(ax=ax4[0],trim=True)
    despine(ax=ax4[1],trim=True)
    despine(ax=ax4[2],trim=True)
    h,l = ax4[0].get_legend_handles_labels()
    fig4.legend(h,l,loc='upper right')
    fig4.subplots_adjust(right=0.75)
    fig4.tight_layout()
    fig4.subplots_adjust(top=0.9)

    fig = plt.figure(5)
    despine(fig,trim=True)
    plt.xlabel("Kinetic Energy (MeV)")
    plt.ylabel("Angular resolution (deg)")
    plt.ylim((0,plt.gca().get_ylim()[1]))
    plt.legend()
    plt.tight_layout()

    fig = plt.figure(6)
    plt.xticks(range(0,1250,100))
    plt.hlines(0,0,1200,color='k',linestyles='--',alpha=0.5)
    despine(fig,trim=True)
    plt.xlabel("Reconstructed Electron Energy (MeV)")
    plt.ylabel(r"Log Likelihood Ratio (e/$\mu$)")
    plt.legend()
    plt.tight_layout()

    if args.save:
        fig = plt.figure(1)
        plt.savefig("energy_bias.pdf")
        plt.savefig("energy_bias.eps")
        fig = plt.figure(2)
        plt.savefig("energy_resolution.pdf")
        plt.savefig("energy_resolution.eps")
        fig = plt.figure(3)
        plt.savefig("position_bias.pdf")
        plt.savefig("position_bias.eps")
        fig = plt.figure(4)
        plt.savefig("position_resolution.pdf")
        plt.savefig("position_resolution.eps")
        fig = plt.figure(5)
        plt.savefig("angular_resolution.pdf")
        plt.savefig("angular_resolution.eps")
        fig = plt.figure(6)
        plt.savefig("likelihood_ratio.pdf")
        plt.savefig("likelihood_ratio.eps")
    else:
        plt.figure(1)
        plt.title("Energy Bias")
        plt.figure(2)
        plt.title("Energy Resolution")
        plt.figure(3)
        fig3.suptitle("Position Bias (cm)")
        plt.figure(4)
        fig4.suptitle("Position Resolution (cm)")
        plt.figure(5)
        plt.title("Angular Resolution")
        plt.figure(6)
        plt.title("Log Likelihood Ratio vs Reconstructed Electron Energy")

        plt.show()