aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authortlatorre <tlatorre@uchicago.edu>2020-09-07 14:27:29 -0500
committertlatorre <tlatorre@uchicago.edu>2020-09-07 14:27:29 -0500
commit8812cfe715842ac9d1d0dae6f8011b401b524c18 (patch)
tree9bfce43c9c5004efcbfbe5946cbbaab02154a77c
parent38c5b2c8996ebaac752694e8812f0981de961da4 (diff)
downloadsddm-8812cfe715842ac9d1d0dae6f8011b401b524c18.tar.gz
sddm-8812cfe715842ac9d1d0dae6f8011b401b524c18.tar.bz2
sddm-8812cfe715842ac9d1d0dae6f8011b401b524c18.zip
fix chi2 analysis when running with --coverage
-rwxr-xr-xutils/chi211
1 files changed, 7 insertions, 4 deletions
diff --git a/utils/chi2 b/utils/chi2
index f600133..23c8560 100755
--- a/utils/chi2
+++ b/utils/chi2
@@ -611,13 +611,16 @@ if __name__ == '__main__':
p_values = {id: [] for id in (20,22,2020,2022,2222)}
p_values_atm = {id: [] for id in (20,22,2020,2022,2222)}
- ENERGY_RESOLUTION_UNCERTAINTY = {'e':100.0, 'u': 100.0, 'eu': 100.0}
+ ENERGY_SCALE_MEAN = {'e': 0.0, 'u': 0.0}
+ ENERGY_SCALE_UNCERTAINTY = {'e':1.0, 'u': 1.0}
+ ENERGY_RESOLUTION_MEAN = {'e': 0.0, 'u': 0.0, 'eu': 0.0}
+ ENERGY_RESOLUTION_UNCERTAINTY = {'e':1.0, 'u': 1.0, 'eu': 1.0}
scale = 0.01
muon_scale = 0.01
energy_resolution = 0.1
- true_values = [scale,1.0,energy_resolution,1.0,energy_resolution,1.0,energy_resolution,muon_scale]
+ true_values = [scale,0.0,energy_resolution,0.0,energy_resolution,energy_resolution,muon_scale]
assert(len(true_values) == len(FIT_PARS))
@@ -640,8 +643,8 @@ if __name__ == '__main__':
n_muon_atm = np.random.poisson(N_muon_atm)
# Sample data from Monte Carlo
- data = pd.concat((data_mc.sample(n=n,replace=True,weights='weights'), muon.sample(n=n_muon,replace=True)))
- data_atm = pd.concat((data_atm_mc.sample(n=n_atm,replace=True,weights='weights'), muon_atm.sample(n=n_muon_atm,replace=True)))
+ data = pd.concat((data_mc.sample(n=n,replace=True,weights='weight'), muon.sample(n=n_muon,replace=True)))
+ data_atm = pd.concat((data_atm_mc.sample(n=n_atm,replace=True,weights='weight'), muon_atm.sample(n=n_muon_atm,replace=True)))
# Smear the energies by the additional energy resolution
data.ke += np.random.randn(len(data.ke))*data.ke*energy_resolution