1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
|
from gputhread import *
from Queue import Queue
from detectors import LBNE
from photon import uniform_sphere
import numpy as np
from pycuda import gpuarray
import pycuda.driver as cuda
from uncertainties import ufloat, umath
from histogram import Histogram
jobs = Queue()
output = Queue()
def generate_event(pos=(0,0,0), nphotons=1000):
origins_float3 = np.tile(gpuarray.vec.make_float3(*pos), (nphotons,1))
directions = uniform_sphere(nphotons)
directions_float3 = np.empty(nphotons, dtype=gpuarray.vec.float3)
directions_float3['x'] = directions[:,0]
directions_float3['y'] = directions[:,1]
directions_float3['z'] = directions[:,2]
jobs.put(Job(origins_float3, directions_float3))
jobs.join()
return output.get()
def likelihood(event_bincount, pos=(0,0,0), nphotons=1000, neval=1000):
for i in range(neval):
origins_float3 = np.tile(gpuarray.vec.make_float3(*pos), (nphotons,1))
directions = uniform_sphere(nphotons)
directions_float3 = np.empty(nphotons, dtype=gpuarray.vec.float3)
directions_float3['x'] = directions[:,0]
directions_float3['y'] = directions[:,1]
directions_float3['z'] = directions[:,2]
jobs.put(Job(origins_float3, directions_float3))
jobs.join()
bincount = np.zeros((neval, len(lbne.solids)))
for i in range(neval):
bincount[i] = output.get()
log_likelihood = ufloat((0,0))
for i in range(len(lbne.solids)):
h = Histogram(100, (-0.5, 99.5))
h.fill(bincount[:,i])
h.normalize()
probability = h.ueval(event_bincount[i])
if probability.nominal_value == 0.0:
probability = ufloat((0.5/h.nentries, 0.5/h.nentries))
log_likelihood += umath.log(probability)
return -log_likelihood
if __name__ == '__main__':
import sys
import optparse
import time
parser = optparse.OptionParser('%prog')
parser.add_option('-b', type='int', dest='nbits', default=8)
parser.add_option('-j', type='int', dest='ndevices', default=1)
parser.add_option('-n', type='int', dest='nblocks', default=64)
options, args = parser.parse_args()
lbne = LBNE()
lbne.build(bits=options.nbits)
cuda.init()
gputhreads = []
for i in range(options.ndevices):
gputhreads.append(GPUThread(i, lbne, jobs, output, options.nblocks))
gputhreads[-1].start()
try:
event_bincount = generate_event()
for z in np.linspace(-1.0, 1.0, 100):
t0 = time.time()
log_likelihood = likelihood(event_bincount, (z,0,0))
elapsed = time.time() - t0
print 'z = %f, likelihood = %s, elapsed %f sec' % (z, log_likelihood, elapsed)
finally:
for gputhread in gputhreads:
gputhread.stop()
for gputhread in gputhreads:
gputhread.join()
|