summaryrefslogtreecommitdiff
path: root/test/test_rayleigh.py
blob: b10cdd8cd1cceee7b3f486fec57404f75e826704 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from unittest_find import unittest
import numpy as np

from chroma.geometry import Solid, Geometry
from chroma.loader import create_geometry_from_obj
from chroma.make import box
from chroma.sim import Simulation
from chroma.demo.optics import water
from chroma.event import Photons
from chroma.rootimport import ROOT
ROOT.gROOT.SetBatch(1)

from chroma.histogram import Histogram, rootify

class TestRayleigh(unittest.TestCase):
    def setUp(self):
        self.cube = Geometry(water)
        self.cube.add_solid(Solid(box(100,100,100), water, water))
        self.geo = create_geometry_from_obj(self.cube, update_bvh_cache=False)
        self.sim = Simulation(self.geo, geant4_processes=0)

        nphotons = 100000
        pos = np.tile([0,0,0], (nphotons,1)).astype(np.float32)
        dir = np.tile([0,0,1], (nphotons,1)).astype(np.float32)
        pol = np.zeros_like(pos)
        phi = np.random.uniform(0, 2*np.pi, nphotons).astype(np.float32)
        pol[:,0] = np.cos(phi)
        pol[:,1] = np.sin(phi)
        t = np.zeros(nphotons, dtype=np.float32)
        wavelengths = np.empty(nphotons, np.float32)
        wavelengths.fill(400.0)

        self.photons = Photons(pos=pos, dir=dir, pol=pol, t=t, wavelengths=wavelengths)

    def testAngularDistributionPolarized(self):
        # Fully polarized photons
        self.photons.pol[:] = [1.0, 0.0, 0.0]

        photons_end = self.sim.simulate([self.photons], keep_photons_end=True, max_steps=1).next().photons_end
        aborted = (photons_end.flags & (1 << 31)) > 0
        self.assertFalse(aborted.any())

        # Compute the dot product between initial and final dir
        rayleigh_scatters = (photons_end.flags & (1 << 4)) > 0
        cos_scatter = (self.photons.dir[rayleigh_scatters] * photons_end.dir[rayleigh_scatters]).sum(axis=1)
        theta_scatter = np.arccos(cos_scatter)
        h = Histogram(bins=100, range=(0, np.pi))
        h.fill(theta_scatter)
        h = rootify(h)

        # The functional form for polarized light should be
        # (1 + \cos^2 \theta)\sin \theta according to GEANT4 physics
        # reference manual.
        f = ROOT.TF1("pol_func", "[0]*(1+cos(x)**2)*sin(x)", 0, np.pi)
        h.Fit(f, 'NQ')
        self.assertGreater(f.GetProb(), 1e-3)