1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
|
#ifndef __ALPHA_H__
#define __ALPHA_H__
#include "linalg.h"
#include "intersect.h"
#include "mesh.h"
template <class T>
__device__ void swap(T &a, T &b)
{
T temp = a;
a = b;
b = temp;
}
#define ALPHA_DEPTH 5
struct HitList
{
int size;
int indices[ALPHA_DEPTH];
float distances[ALPHA_DEPTH];
};
__device__ void add_to_hit_list(const float &distance, const int &index, HitList &h)
{
int i;
if (h.size >= ALPHA_DEPTH)
{
if (distance > h.distances[ALPHA_DEPTH-1])
return;
i = ALPHA_DEPTH-1;
}
else
{
i = h.size;
h.size += 1;
}
h.indices[i] = index;
h.distances[i] = distance;
while (i > 0 && h.distances[i-1] > h.distances[i])
{
swap(h.distances[i-1], h.distances[i]);
swap(h.indices[i-1], h.indices[i]);
i -= 1;
}
}
__device__ __noinline__ int get_color_alpha(const float3 &origin, const float3& direction)
{
HitList h;
h.size = 0;
float distance;
if (!intersect_node(origin, direction, g_start_node))
return 0;
int stack[STACK_SIZE];
int *head = &stack[0];
int *node = &stack[1];
int *tail = &stack[STACK_SIZE-1];
*node = g_start_node;
int i;
do
{
int first_child = tex1Dfetch(node_map, *node);
int child_count = tex1Dfetch(node_length, *node);
while (*node >= g_first_node && child_count == 1)
{
*node = first_child;
first_child = tex1Dfetch(node_map, *node);
child_count = tex1Dfetch(node_length, *node);
}
if (*node >= g_first_node)
{
for (i=0; i < child_count; i++)
{
if (intersect_node(origin, direction, first_child+i))
{
*node = first_child+i;
node++;
}
}
node--;
}
else // node is a leaf
{
for (i=0; i < child_count; i++)
{
uint4 triangle_data = g_triangles[first_child+i];
float3 v0 = g_vertices[triangle_data.x];
float3 v1 = g_vertices[triangle_data.y];
float3 v2 = g_vertices[triangle_data.z];
if (intersect_triangle(origin, direction, v0, v1, v2, distance))
{
add_to_hit_list(distance, first_child+i, h);
}
} // triangle loop
node--;
} // node is a leaf
} // while loop
while (node != head);
if (h.size < 1)
return 0;
float scale = 1.0;
unsigned int r = 0;
unsigned int g = 0;
unsigned int b = 0;
for (i=0; i < h.size; i++)
{
uint4 triangle_data = g_triangles[h.indices[i]];
float3 v0 = g_vertices[triangle_data.x];
float3 v1 = g_vertices[triangle_data.y];
float3 v2 = g_vertices[triangle_data.z];
float cos_theta = dot(normalize(cross(v1-v0,v2-v1)),-direction);
if (cos_theta < 0.0f)
cos_theta = dot(-normalize(cross(v1-v0,v2-v1)),-direction);
unsigned int r0 = 0xff & (g_colors[h.indices[i]] >> 16);
unsigned int g0 = 0xff & (g_colors[h.indices[i]] >> 8);
unsigned int b0 = 0xff & g_colors[h.indices[i]];
float alpha = (255 - (0xff & (g_colors[h.indices[i]] >> 24)))/255.0f;
r += floorf(r0*scale*cos_theta*alpha);
g += floorf(g0*scale*cos_theta*alpha);
b += floorf(b0*scale*cos_theta*alpha);
scale *= (1.0f-alpha);
}
return r << 16 | g << 8 | b;
}
#endif
|