1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
|
#!/usr/bin/env python
import sys
import time
import os
import numpy as np
import detectors
import optics
import generator
from generator import constant
import itertools
import threading
import gpu
from fileio import root
from chroma.itertoolset import repeating_iterator
from tools import profile_if_possible, enable_debug_on_crash
def pick_seed():
'''Returns a seed for a random number generator selected using
a mixture of the current time and the current process ID.'''
return int(time.time()) ^ (os.getpid() << 16)
class Simulation(object):
def __init__(self, detector, detector_material,
seed=None, cuda_device=None, geant4_processes=4, bvh_bits=11,
use_cache=True):
self.detector = detector
if seed is None:
self.seed = pick_seed()
else:
self.seed = seed
print >>sys.stderr, 'RNG seed:', self.seed
# We have three generators to seed: numpy.random, GEANT4, and CURAND.
# The latter two are done below
np.random.seed(self.seed)
self.detector_material = detector_material
if geant4_processes > 0:
self.photon_generator = generator.photon.G4ParallelGenerator(geant4_processes,
detector_material,
base_seed=self.seed)
else:
self.photon_generator = None
print >>sys.stderr, 'Creating BVH with %d bits...' % (bvh_bits)
detector.build(bits=bvh_bits, use_cache=use_cache)
print >>sys.stderr, 'Initializing GPU...'
self.gpu_worker = gpu.GPU(cuda_device)
print >>sys.stderr, 'Loading detector onto GPU...'
self.gpu_worker.load_geometry(detector)
print >>sys.stderr, 'Initializing random numbers generators...'
self.gpu_worker.setup_propagate(seed=self.seed)
self.gpu_worker.setup_daq(max(self.detector.pmtids))
self.pdf_config = None
def simulate(self, nevents, vertex_generator, keep_photon_start=False, keep_photon_stop=False,
run_daq=True, nreps=1):
photon_gen = repeating_iterator(self.photon_generator.generate_events(nevents, vertex_generator),
nreps)
return self.simulate_photons(nevents*nreps,
photon_gen,
keep_photon_start=keep_photon_start, keep_photon_stop=keep_photon_stop,
run_daq=run_daq)
def simulate_photons(self, nevents, photon_generator, keep_photon_start=False, keep_photon_stop=False,
run_daq=True):
for ev in itertools.islice(photon_generator, nevents):
self.gpu_worker.load_photons(ev.photon_start)
self.gpu_worker.propagate()
self.gpu_worker.run_daq()
ev.nphoton = len(ev.photon_start.positions)
if not keep_photon_start:
ev.photon_start = None
if keep_photon_stop:
ev.photon_stop = self.gpu_worker.get_photons()
if run_daq:
ev.hits = self.gpu_worker.get_hits()
ev.channels = ev.hits
yield ev
def propagate_photons(self, photons, max_steps=10):
self.gpu_worker.load_photons(photons)
self.gpu_worker.propagate(max_steps=max_steps)
return self.gpu_worker.get_photons()
def create_pdf(self, nevents, vertex_generator, tbins, trange,
qbins, qrange, nreps=1):
photon_gen = repeating_iterator(self.photon_generator.generate_events(nevents, vertex_generator),
nreps)
return self.create_pdf_from_photons(nevents*nreps, photon_gen,
tbins, trange, qbins, qrange)
def create_pdf_from_photons(self, nevents, photon_generator,
tbins, trange, qbins, qrange):
'''Returns tuple: 1D array of channel hit counts, 3D array of (channel, time, charge) pdfs'''
pdf_config = (tbins, trange, qbins, qrange)
if pdf_config != self.pdf_config:
self.pdf_config = pdf_config
self.gpu_worker.setup_pdf(max(self.detector.pmtids), tbins, trange,
qbins, qrange)
else:
self.gpu_worker.clear_pdf()
for ev in itertools.islice(photon_generator, nevents):
self.gpu_worker.load_photons(ev.photon_start)
self.gpu_worker.propagate()
self.gpu_worker.run_daq()
self.gpu_worker.add_hits_to_pdf()
return self.gpu_worker.get_pdfs()
@profile_if_possible
def main():
import optparse
parser = optparse.OptionParser('%prog filename')
parser.add_option('-b', type='int', dest='nbits', default=11)
parser.add_option('-j', type='int', dest='device', default=None)
parser.add_option('-s', type='int', dest='seed', default=None,
help='Set random number generator seed')
parser.add_option('-g', type='int', dest='ngenerators', default=4,
help='Number of GEANT4 generator processes')
parser.add_option('--detector', type='string', dest='detector', default='microlbne')
parser.add_option('--nevents', type='int', dest='nevents', default=100)
parser.add_option('--particle', type='string', dest='particle', default='e-')
parser.add_option('--energy', type='float', dest='energy', default=100.0)
parser.add_option('--pos', type='string', dest='pos', default='(0,0,0)')
parser.add_option('--dir', type='string', dest='dir', default='(1,0,0)')
parser.add_option('--save-photon-start', action='store_true',
dest='save_photon_start', default=False,
help='Save initial photon vertices to disk')
parser.add_option('--save-photon-stop', action='store_true',
dest='save_photon_stop', default=False,
help='Save final photon vertices to disk')
options, args = parser.parse_args()
if len(args) < 1:
sys.exit(parser.format_help())
else:
output_filename = args[0]
if options.nevents <= 0:
sys.exit('--nevents must be greater than 0!')
position = np.array(eval(options.pos), dtype=float)
direction = np.array(eval(options.dir), dtype=float)
print >>sys.stderr, 'Loading detector %s...' % options.detector
detector = detectors.find(options.detector)
print >>sys.stderr, 'Creating generator...'
if options.particle == 'pi0':
vertex_generator = generator.vertex.pi0_gun(pi0_position=constant(position),
pi0_direction=constant(direction),
pi0_total_energy=constant(options.energy))
else:
vertex_generator = generator.vertex.particle_gun(particle_name=constant(options.particle),
position=constant(position),
direction=constant(direction),
total_energy=constant(options.energy))
# Initializing simulation
print >>sys.stderr, 'WARNING: ASSUMING DETECTOR IS WCSIM WATER!!'
simulation = Simulation(detector=detector, detector_material=optics.water_wcsim,
seed=options.seed, cuda_device=options.device,
geant4_processes=options.ngenerators, bvh_bits=options.nbits)
# Create output file
writer = root.RootWriter(output_filename)
# Preheat generator
event_iterator = simulation.simulate(options.nevents, vertex_generator,
keep_photon_start=options.save_photon_start,
keep_photon_stop=options.save_photon_stop)
print >>sys.stderr, 'Starting simulation...'
start_sim = time.time()
nphotons = 0
for i, ev in enumerate(event_iterator):
assert ev.nphoton > 0, 'GEANT4 generated event with no photons!'
nphotons += ev.nphoton
writer.write_event(ev)
if i % 10 == 0:
print >>sys.stderr, "\rEvent:", i,
end_sim = time.time()
print >>sys.stderr, "\rEvent:", options.nevents - 1
writer.close()
print >>sys.stderr, 'Done. %1.1f events/sec, %1.0f photons/sec.' % (options.nevents/(end_sim - start_sim), nphotons/(end_sim - start_sim))
if __name__ == '__main__':
enable_debug_on_crash()
main()
|