1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
|
import numpy as np
from histogram import HistogramDD
from uncertainties import ufloat, umath
from itertools import izip, compress
class Likelihood(object):
"Class to evaluate likelihoods for detector events."
def __init__(self, sim, event=None):
"""
Args:
- sim: chroma.sim.Simulation
The simulation object used to simulate events and build pdfs.
- event: chroma.event.Event, *optional*
The detector event being reconstructed. If None, you must call
set_event() before eval().
"""
self.sim = sim
if event is not None:
self.set_event(event)
self.pdfs = dict(zip(sim.detector.pmtids,[HistogramDD((100,10), range=[(0.0,500.0),(-0.5,9.5)]) for i in sim.detector.pmtids]))
def set_event(self, event):
"Set the detector event being reconstructed."
self.event = event
def eval(self, vertex_generator, nevals):
"""
Return the negative log likelihood that the detector event set in the
constructor or by set_event() was the result of a particle generated
by `vertex_generator`.
"""
for pdf in self.pdfs.values():
pdf.reset()
for ev in self.sim.simulate(nevals, vertex_generator):
for i, t, q in compress(izip(range(ev.channels.hit.size),ev.channels.t,ev.channels.q),ev.channels.hit):
self.pdfs[i].fill((ev.channels.t[i],ev.channels.q[i]))
for pdf in self.pdfs.values():
if pdf.nentries > 0:
pdf.normalize()
log_likelihood = ufloat((0,0))
for i, t, q in compress(izip(range(self.event.channels.hit.size),self.event.channels.t,self.event.channels.q),self.event.channels.hit):
probability = self.pdfs[i].ueval((t,q)).item()
if probability.nominal_value == 0.0:
if self.pdfs[i].nentries > 0:
probability = ufloat([0.5/self.pdfs[i].nentries]*2)
else:
probability = ufloat([1.0/self.pdfs[i].hist.size]*2)
log_likelihood += umath.log(probability)
return -log_likelihood
if __name__ == '__main__':
from chroma import detectors
from chroma.sim import Simulation
from chroma.optics import water
from chroma.generator import constant_particle_gun
detector = detectors.find('lbne')
sim = Simulation(detector, water)
event = sim.simulate(1, constant_particle_gun('e-',(0,0,0),(1,0,0),100.0)).next()
print 'nhit = %i' % np.count_nonzero(event.hits.hit)
likelihood = Likelihood(sim, event)
for x in np.linspace(-10.0, 10.0, 10*5+1):
print 'x = %5.1f, %s' % (x, likelihood.eval(constant_particle_gun('e-',(x,0,0),(1,0,0),100.0),100))
|