1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
|
import numpy as np
import time
import pycuda.driver as cuda
from pycuda.characterize import sizeof
from pycuda.compiler import SourceModule
from pycuda import gpuarray
import threading
import Queue
import src
class GPUThread(threading.Thread):
def __init__(self, device_id, geometry, jobs, output, nblocks=64, max_nthreads=100000):
threading.Thread.__init__(self)
self.device_id = device_id
self.geometry = geometry
self.jobs = jobs
self.output = output
self.nblocks = nblocks
self.max_nthreads = max_nthreads
self._stop = threading.Event()
def stop(self):
self._stop.set()
def stopped(self):
return self._stop.is_set()
def run(self):
device = cuda.Device(self.device_id)
context = device.make_context()
module = SourceModule(src.kernel, options=['-I' + src.dir], no_extern_c=True, cache_dir=False)
propagate = module.get_function('propagate')
fill_float = module.get_function('fill_float')
fill_float3 = module.get_function('fill_float3')
fill_uniform = module.get_function('fill_uniform')
fill_uniform_sphere = module.get_function('fill_uniform_sphere')
init_rng = module.get_function('init_rng')
rng_states_gpu = cuda.mem_alloc(self.max_nthreads*sizeof('curandStateXORWOW', '#include <curand_kernel.h>'))
init_rng(np.int32(self.max_nthreads), rng_states_gpu, np.int32(self.device_id), np.int32(0), block=(self.nblocks,1,1), grid=(self.max_nthreads//self.nblocks+1,1))
texrefs = self.geometry.load(module)
daq_module = SourceModule(src.daq, options=['-I' + src.dir], no_extern_c=True, cache_dir=False)
reset_earliest_time_int = daq_module.get_function('reset_earliest_time_int')
run_daq = daq_module.get_function('run_daq')
convert_sortable_int_to_float = daq_module.get_function('convert_sortable_int_to_float')
earliest_time_gpu = gpuarray.GPUArray(shape=(max(self.geometry.pmtids)+1,), dtype=np.float32)
earliest_time_int_gpu = gpuarray.GPUArray(shape=earliest_time_gpu.shape, dtype=np.uint32)
solid_map_gpu = gpuarray.to_gpu(self.geometry.solid_id.astype(np.int32))
while not self.stopped():
try:
position, nphotons = self.jobs.get(block=False, timeout=0.1)
except Queue.Empty:
continue
t0 = time.time()
gpu_kwargs = {'block': (self.nblocks,1,1), 'grid': (nphotons//self.nblocks+1,1)}
positions_gpu = cuda.mem_alloc(np.dtype(gpuarray.vec.float3).itemsize*nphotons)
fill_float3(np.int32(nphotons), positions_gpu, position, **gpu_kwargs)
directions_gpu = cuda.mem_alloc(np.dtype(gpuarray.vec.float3).itemsize*nphotons)
fill_uniform_sphere(np.int32(nphotons), rng_states_gpu, directions_gpu, **gpu_kwargs)
wavelengths_gpu = cuda.mem_alloc(np.dtype(np.float32).itemsize*nphotons)
fill_uniform(np.int32(nphotons), rng_states_gpu, wavelengths_gpu, np.float32(200), np.float32(800), **gpu_kwargs)
polarizations_gpu = cuda.mem_alloc(np.dtype(gpuarray.vec.float3).itemsize*nphotons)
fill_uniform_sphere(np.int32(nphotons), rng_states_gpu, polarizations_gpu, **gpu_kwargs)
times_gpu = cuda.mem_alloc(np.dtype(np.float32).itemsize*nphotons)
fill_float(np.int32(nphotons), times_gpu, np.float32(0), **gpu_kwargs)
states_gpu = cuda.mem_alloc(np.dtype(np.int32).itemsize*nphotons)
fill_float(np.int32(nphotons), states_gpu, np.int32(-1), **gpu_kwargs)
last_hit_triangles_gpu = cuda.mem_alloc(np.dtype(np.int32).itemsize*nphotons)
fill_float(np.int32(nphotons), last_hit_triangles_gpu, np.int32(-1), **gpu_kwargs)
max_steps = 10
propagate(np.int32(nphotons), rng_states_gpu, positions_gpu, directions_gpu, wavelengths_gpu, polarizations_gpu, times_gpu, states_gpu, last_hit_triangles_gpu, np.int32(self.geometry.node_map.size-1), np.int32(self.geometry.first_node), np.int32(max_steps), block=(self.nblocks,1,1), grid=(nphotons//self.nblocks+1,1))
reset_earliest_time_int(np.float32(1e9), np.int32(len(earliest_time_int_gpu)), earliest_time_int_gpu, block=(self.nblocks,1,1), grid=(len(earliest_time_int_gpu)//self.nblocks+1,1))
run_daq(rng_states_gpu, np.int32(2), np.float32(1.2e-9), np.int32(nphotons), times_gpu, states_gpu, last_hit_triangles_gpu, solid_map_gpu, np.int32(len(earliest_time_int_gpu)), earliest_time_int_gpu, block=(self.nblocks,1,1), grid=(nphotons//self.nblocks+1,1))
convert_sortable_int_to_float(np.int32(len(earliest_time_int_gpu)), earliest_time_int_gpu, earliest_time_gpu, block=(self.nblocks,1,1), grid=(len(earliest_time_int_gpu)//self.nblocks+1,1))
cuda.Context.synchronize()
elapsed = time.time() - t0
#print 'device %i; elapsed %f sec' % (self.device_id, elapsed)
self.output.put(earliest_time_gpu.get())
self.jobs.task_done()
context.pop()
|