summaryrefslogtreecommitdiff
path: root/gputhread.py
blob: f573916d743d5e6adf61779eccccc62b811fa921 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import numpy as np
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
import threading
import Queue
import src

class Job(object):
    def __init__(self, origins, directions):
        self.origins, self.directions = origins, directions

class GPUThread(threading.Thread):
    def __init__(self, device_id, geometry, jobs, output, nblocks=64):
        threading.Thread.__init__(self)

        self.device_id = device_id
        self.geometry = geometry
        self.jobs = jobs
        self.output = output
        self.nblocks = nblocks
        self._stop = threading.Event()

    def stop(self):
        self._stop.set()

    def stopped(self):
        return self._stop.is_set()

    def run(self):
        device = cuda.Device(self.device_id)
        context = device.make_context()
        module = SourceModule(src.kernel, options=['-I' + src.dir],
                              no_extern_c=True, cache_dir=False)
        propagate = module.get_function('propagate')
        texrefs = self.geometry.load(module)

        while not self.stopped():
            try:
                job = self.jobs.get()
            except Queue.Empty:
                continue

            origins_gpu, directions_gpu = cuda.to_device(job.origins), \
                cuda.to_device(job.directions)

            dest = np.empty(job.origins.size, dtype=np.int32)
            dest_gpu = cuda.to_device(dest)

            propagate(np.int32(job.origins.size), origins_gpu, directions_gpu, np.int32(self.geometry.node_map.size-1), np.int32(self.geometry.first_node), dest_gpu, block=(self.nblocks,1,1), grid=(job.origins.size//self.nblocks+1,1), texrefs=texrefs)
            cuda.Context.synchronize()

            cuda.memcpy_dtoh(dest, dest_gpu)

            triangles = dest[(dest != -1)]

            bincount = np.zeros(len(self.geometry.solids))
            gpu_bincount = np.bincount(self.geometry.solid_id[triangles])
            bincount[:gpu_bincount.size] = gpu_bincount

            self.output.put(bincount)
            self.jobs.task_done()

        context.pop()