1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
import numpy as np
import time
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
from pycuda import gpuarray
import threading
import Queue
import src
class Job(object):
def __init__(self, positions, directions, wavelengths, polarizations,
times, states, last_hit_triangles, max_steps=100):
if positions.dtype is not gpuarray.vec.float3:
if len(positions.shape) != 2 or positions.shape[-1] != 3:
raise Exception('shape mismatch')
self.positions = np.empty(positions.shape[0], gpuarray.vec.float3)
self.positions['x'] = positions[:,0]
self.positions['y'] = positions[:,1]
self.positions['z'] = positions[:,2]
else:
self.positions = positions
if directions.dtype is not gpuarray.vec.float3:
if len(directions.shape) != 2 or directions.shape[-1] != 3:
raise Exception('shape mismatch')
self.directions = \
np.empty(directions.shape[0], gpuarray.vec.float3)
self.directions['x'] = directions[:,0]
self.directions['y'] = directions[:,1]
self.directions['z'] = directions[:,2]
else:
self.directions = directions
if polarizations.dtype is not gpuarray.vec.float3:
if len(polarizations.shape) != 2 or polarizations.shape[-1] != 3:
raise Exception('shape mismatch')
self.polarizations = \
np.empty(polarizations.shape[0], gpuarray.vec.float3)
self.polarizations['x'] = polarizations[:,0]
self.polarizations['y'] = polarizations[:,1]
self.polarizations['z'] = polarizations[:,2]
else:
self.polarizations = polarizations
self.wavelengths = np.asarray(wavelengths, dtype=np.float32)
self.times = np.asarray(times, dtype=np.float32)
self.states = np.asarray(states, dtype=np.int32)
self.last_hit_triangles = \
np.asarray(last_hit_triangles, dtype=np.int32)
self.max_steps = max_steps
class GPUThread(threading.Thread):
def __init__(self, device_id, geometry, jobs, output, nblocks=64):
threading.Thread.__init__(self)
self.device_id = device_id
self.geometry = geometry
self.jobs = jobs
self.output = output
self.nblocks = nblocks
self._stop = threading.Event()
def stop(self):
self._stop.set()
def stopped(self):
return self._stop.is_set()
def run(self):
device = cuda.Device(self.device_id)
context = device.make_context()
module = SourceModule(src.kernel, options=['-I' + src.dir], no_extern_c=True, cache_dir=False)
propagate = module.get_function('propagate')
init_rng = module.get_function('init_rng')
texrefs = self.geometry.load(module)
daq_module = SourceModule(src.daq, options=['-I' + src.dir],
no_extern_c=True, cache_dir=False)
init_daq_rng = daq_module.get_function('init_daq_rng')
reset_earliest_time_int = daq_module.get_function('reset_earliest_time_int')
run_daq = daq_module.get_function('run_daq')
convert_sortable_int_to_float = daq_module.get_function('convert_sortable_int_to_float')
earliest_time_gpu = gpuarray.GPUArray(shape=(max(self.geometry.pmtids)+1,), dtype=np.float32)
earliest_time_int_gpu = gpuarray.GPUArray(shape=earliest_time_gpu.shape, dtype=np.uint32)
solid_map_gpu = gpuarray.to_gpu(self.geometry.solid_id.astype(np.int32))
init_rng(np.int32(100000), np.int32(self.device_id), np.int32(0), block=(self.nblocks,1,1), grid=(100000//self.nblocks+1,1))
init_daq_rng(np.int32(100000), np.int32(10000+self.device_id), np.int32(0), block=(self.nblocks,1,1), grid=(100000//self.nblocks+1,1))
while not self.stopped():
try:
job = self.jobs.get(block=False, timeout=0.01)
except Queue.Empty:
continue
positions_gpu = cuda.to_device(job.positions)
directions_gpu = cuda.to_device(job.directions)
polarizations_gpu = cuda.to_device(job.polarizations)
wavelengths_gpu = cuda.to_device(job.wavelengths)
times_gpu = cuda.to_device(job.times)
states_gpu = cuda.to_device(job.states)
last_hit_triangles_gpu = cuda.to_device(job.last_hit_triangles)
nphotons = len(job.positions)
t0 = time.time()
propagate(np.int32(nphotons), positions_gpu, directions_gpu, wavelengths_gpu, polarizations_gpu, times_gpu, states_gpu, last_hit_triangles_gpu, np.int32(self.geometry.node_map.size-1), np.int32(self.geometry.first_node), np.int32(job.max_steps), block=(self.nblocks,1,1), grid=(nphotons//self.nblocks+1,1))
reset_earliest_time_int(np.float32(1e9), np.int32(len(earliest_time_int_gpu)), earliest_time_int_gpu,
block=(self.nblocks,1,1),
grid=(len(earliest_time_int_gpu)//self.nblocks+1,1))
run_daq(np.int32(2), np.float32(1.2e-9), np.int32(nphotons), times_gpu, states_gpu,
last_hit_triangles_gpu, solid_map_gpu,
np.int32(len(earliest_time_int_gpu)), earliest_time_int_gpu,
block=(self.nblocks,1,1), grid=(nphotons//self.nblocks+1,1))
convert_sortable_int_to_float(np.int32(len(earliest_time_int_gpu)), earliest_time_int_gpu,
earliest_time_gpu,
block=(self.nblocks,1,1),
grid=(len(earliest_time_int_gpu)//self.nblocks+1,1))
cuda.Context.synchronize()
elapsed = time.time() - t0
#print 'device %i; elapsed %f sec' % (self.device_id, elapsed)
cuda.memcpy_dtoh(job.positions, positions_gpu)
cuda.memcpy_dtoh(job.directions, directions_gpu)
cuda.memcpy_dtoh(job.wavelengths, wavelengths_gpu)
cuda.memcpy_dtoh(job.polarizations, polarizations_gpu)
cuda.memcpy_dtoh(job.times, times_gpu)
cuda.memcpy_dtoh(job.states, states_gpu)
cuda.memcpy_dtoh(job.last_hit_triangles, last_hit_triangles_gpu)
job.earliest_times = earliest_time_gpu.get()
self.output.put(job)
self.jobs.task_done()
context.pop()
|