summaryrefslogtreecommitdiff
path: root/gputhread.py
blob: 6271607664d5533e72ee3354f7abbff172ec1577 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import numpy as np
import time
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
from pycuda import gpuarray
import threading
import Queue
import src

class Job(object):
    def __init__(self, positions, directions, wavelengths, polarizations,
                 times, states, last_hit_triangles, max_steps=100):
        if positions.dtype is not gpuarray.vec.float3:
            if len(positions.shape) != 2 or positions.shape[-1] != 3:
                raise Exception('shape mismatch')

            self.positions = np.empty(positions.shape[0], gpuarray.vec.float3)
            self.positions['x'] = positions[:,0]
            self.positions['y'] = positions[:,1]
            self.positions['z'] = positions[:,2]
        else:
            self.positions = positions

        if directions.dtype is not gpuarray.vec.float3:
            if len(directions.shape) != 2 or directions.shape[-1] != 3:
                raise Exception('shape mismatch')

            self.directions = \
                np.empty(directions.shape[0], gpuarray.vec.float3)
            self.directions['x'] = directions[:,0]
            self.directions['y'] = directions[:,1]
            self.directions['z'] = directions[:,2]
        else:
            self.directions = directions

        if polarizations.dtype is not gpuarray.vec.float3:
            if len(polarizations.shape) != 2 or polarizations.shape[-1] != 3:
                raise Exception('shape mismatch')

            self.polarizations = \
                np.empty(polarizations.shape[0], gpuarray.vec.float3)
            self.polarizations['x'] = polarizations[:,0]
            self.polarizations['y'] = polarizations[:,1]
            self.polarizations['z'] = polarizations[:,2]
        else:
            self.polarizations = polarizations

        self.wavelengths = np.asarray(wavelengths, dtype=np.float32)
        self.times = np.asarray(times, dtype=np.float32)
        self.states = np.asarray(states, dtype=np.int32)
        self.last_hit_triangles = \
            np.asarray(last_hit_triangles, dtype=np.int32)

        self.max_steps = max_steps

class GPUThread(threading.Thread):
    def __init__(self, device_id, geometry, jobs, output, nblocks=64):
        threading.Thread.__init__(self)

        self.device_id = device_id
        self.geometry = geometry
        self.jobs = jobs
        self.output = output
        self.nblocks = nblocks
        self._stop = threading.Event()

    def stop(self):
        self._stop.set()

    def stopped(self):
        return self._stop.is_set()

    def run(self):
        device = cuda.Device(self.device_id)
        context = device.make_context()
        module = SourceModule(src.kernel, options=['-I' + src.dir], no_extern_c=True, cache_dir=False)
        propagate = module.get_function('propagate')
        init_rng = module.get_function('init_rng')
        texrefs = self.geometry.load(module)

        init_rng(np.int32(100000), np.int32(0), np.int32(0), block=(self.nblocks,1,1), grid=(100000//self.nblocks+1,1))

        while not self.stopped():
            try:
                job = self.jobs.get(block=False, timeout=0.5)
            except Queue.Empty:
                continue

            positions_gpu = cuda.to_device(job.positions)
            directions_gpu = cuda.to_device(job.directions)
            polarizations_gpu = cuda.to_device(job.polarizations)
            wavelengths_gpu = cuda.to_device(job.wavelengths)
            times_gpu = cuda.to_device(job.times)
            states_gpu = cuda.to_device(job.states)
            last_hit_triangles_gpu = cuda.to_device(job.last_hit_triangles)

            nphotons = len(job.positions)

            t0 = time.time()
            propagate(np.int32(nphotons), positions_gpu, directions_gpu, wavelengths_gpu, polarizations_gpu, times_gpu, states_gpu, last_hit_triangles_gpu, np.int32(self.geometry.node_map.size-1), np.int32(self.geometry.first_node), np.int32(job.max_steps), block=(self.nblocks,1,1), grid=(nphotons//self.nblocks+1,1))
            cuda.Context.synchronize()
            elapsed = time.time() - t0
            
            #print 'device %i; elapsed %f sec' % (self.device_id, elapsed)

            cuda.memcpy_dtoh(job.positions, positions_gpu)
            cuda.memcpy_dtoh(job.directions, directions_gpu)
            cuda.memcpy_dtoh(job.wavelengths, wavelengths_gpu)
            cuda.memcpy_dtoh(job.polarizations, polarizations_gpu)
            cuda.memcpy_dtoh(job.times, times_gpu)
            cuda.memcpy_dtoh(job.states, states_gpu)
            cuda.memcpy_dtoh(job.last_hit_triangles, last_hit_triangles_gpu)

            self.output.put(job)
            self.jobs.task_done()

        context.pop()