1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
|
import numpy as np
import numpy.ma as ma
from copy import copy
from itertools import izip
import os
import sys
import pytools
import pycuda.tools
from pycuda.compiler import SourceModule
from pycuda import characterize
import pycuda.driver as cuda
from pycuda import gpuarray as ga
import chroma.src
from chroma.tools import timeit
from chroma.geometry import standard_wavelengths
from chroma.color import map_to_color
from chroma import event
cuda.init()
# standard nvcc options
cuda_options = ('--use_fast_math',)#, '--ptxas-options=-v']
@pycuda.tools.context_dependent_memoize
def get_cu_module(name, options=None, include_source_directory=True):
"""Returns a pycuda.compiler.SourceModule object from a CUDA source file
located in the chroma src directory at src/[name].cu."""
if options is None:
options = []
elif isinstance(options, tuple):
options = list(options)
else:
raise TypeError('`options` must be a tuple.')
srcdir = os.path.dirname(os.path.abspath(chroma.src.__file__))
if include_source_directory:
options += ['-I' + srcdir]
with open('%s/%s' % (srcdir, name)) as f:
source = f.read()
return pycuda.compiler.SourceModule(source, options=options,
no_extern_c=True)
def get_cu_source(name):
srcdir = os.path.dirname(os.path.abspath(chroma.src.__file__))
with open('%s/%s' % (srcdir, name)) as f:
source = f.read()
return source
class GPUFuncs(object):
"""Simple container class for GPU functions as attributes."""
def __init__(self, module):
self.module = module
self.funcs = {}
def __getattr__(self, name):
try:
return self.funcs[name]
except KeyError:
f = self.module.get_function(name)
self.funcs[name] = f
return f
init_rng_src = """
#include <curand_kernel.h>
extern "C"
{
__global__ void init_rng(int nthreads, curandState *s, unsigned long long seed, unsigned long long offset)
{
int id = blockIdx.x*blockDim.x + threadIdx.x;
if (id >= nthreads)
return;
curand_init(seed, id, offset, &s[id]);
}
} // extern "C"
"""
def get_rng_states(size, seed=1):
"Return `size` number of CUDA random number generator states."
rng_states = cuda.mem_alloc(size*characterize.sizeof('curandStateXORWOW', '#include <curand_kernel.h>'))
module = pycuda.compiler.SourceModule(init_rng_src, no_extern_c=True)
init_rng = module.get_function('init_rng')
init_rng(np.int32(size), rng_states, np.uint64(seed), np.uint64(0), block=(64,1,1), grid=(size//64+1,1))
return rng_states
def to_float3(arr):
"Returns an pycuda.gpuarray.vec.float3 array from an (N,3) array."
if not arr.flags['C_CONTIGUOUS']:
arr = np.asarray(arr, order='c')
return arr.astype(np.float32).view(ga.vec.float3)[:,0]
def to_uint3(arr):
"Returns a pycuda.gpuarray.vec.uint3 array from an (N,3) array."
if not arr.flags['C_CONTIGUOUS']:
arr = np.asarray(arr, order='c')
return arr.astype(np.uint32).view(ga.vec.uint3)[:,0]
def chunk_iterator(nelements, nthreads_per_block=64, max_blocks=1024):
"""Iterator that yields tuples with the values requried to process
a long array in multiple kernel passes on the GPU.
Each yielded value is of the form,
(first_index, elements_this_iteration, nblocks_this_iteration)
Example:
>>> list(chunk_iterator(300, 32, 2))
[(0, 64, 2), (64, 64, 2), (128, 64, 2), (192, 64, 2), (256, 9, 1)]
"""
first = 0
while first < nelements:
elements_left = nelements - first
blocks = int(elements_left // nthreads_per_block)
if elements_left % nthreads_per_block != 0:
blocks += 1 # Round up only if needed
blocks = min(max_blocks, blocks)
elements_this_round = min(elements_left, blocks * nthreads_per_block)
yield (first, elements_this_round, blocks)
first += elements_this_round
class GPUPhotons(object):
def __init__(self, photons):
self.pos = ga.to_gpu(to_float3(photons.pos))
self.dir = ga.to_gpu(to_float3(photons.dir))
self.pol = ga.to_gpu(to_float3(photons.pol))
self.wavelengths = ga.to_gpu(photons.wavelengths.astype(np.float32))
self.t = ga.to_gpu(photons.t.astype(np.float32))
self.last_hit_triangles = ga.to_gpu(photons.last_hit_triangles.astype(np.int32))
self.flags = ga.to_gpu(photons.flags.astype(np.uint32))
#cuda_options = ('--use_fast_math', '-w')#, '--ptxas-options=-v']
module = get_cu_module('propagate.cu', options=cuda_options)
self.gpu_funcs = GPUFuncs(module)
def get(self):
pos = self.pos.get().view(np.float32).reshape((len(self.pos),3))
dir = self.dir.get().view(np.float32).reshape((len(self.dir),3))
pol = self.pol.get().view(np.float32).reshape((len(self.pol),3))
wavelengths = self.wavelengths.get()
t = self.t.get()
last_hit_triangles = self.last_hit_triangles.get()
flags = self.flags.get()
return event.Photons(pos, dir, pol, wavelengths, t, last_hit_triangles, flags)
def propagate(self, gpu_geometry, rng_states, nthreads_per_block=64,
max_blocks=1024, max_steps=10):
"""Propagate photons on GPU to termination or max_steps, whichever
comes first.
May be called repeatedly without reloading photon information if
single-stepping through photon history.
..warning::
`rng_states` must have at least `nthreads_per_block`*`max_blocks`
number of curandStates.
"""
nphotons = self.pos.size
step = 0
input_queue = np.zeros(shape=nphotons+1, dtype=np.uint32)
input_queue[1:] = np.arange(nphotons, dtype=np.uint32)
input_queue_gpu = ga.to_gpu(input_queue)
output_queue = np.zeros(shape=nphotons+1, dtype=np.uint32)
output_queue[0] = 1
output_queue_gpu = ga.to_gpu(output_queue)
while step < max_steps:
# Just finish the rest of the steps if the # of photons is low
if nphotons < nthreads_per_block * 16 * 8:
nsteps = max_steps - step
else:
nsteps = 1
for first_photon, photons_this_round, blocks in \
chunk_iterator(nphotons, nthreads_per_block, max_blocks):
self.gpu_funcs.propagate(np.int32(first_photon), np.int32(photons_this_round), input_queue_gpu[1:], output_queue_gpu, rng_states, self.pos, self.dir, self.wavelengths, self.pol, self.t, self.flags, self.last_hit_triangles, np.int32(nsteps), gpu_geometry.gpudata, block=(nthreads_per_block,1,1), grid=(blocks, 1))
step += nsteps
if step < max_steps:
temp = input_queue_gpu
input_queue_gpu = output_queue_gpu
output_queue_gpu = temp
output_queue_gpu[:1].set(np.uint32(1))
nphotons = input_queue_gpu[:1].get()[0] - 1
if ga.max(self.flags).get() & (1 << 31):
print >>sys.stderr, "WARNING: ABORTED PHOTONS"
class GPUChannels(object):
def __init__(self, t, q, flags):
self.t = t
self.q = q
self.flags = flags
def get(self):
t = self.t.get()
q = self.q.get().astype(np.float32)
# For now, assume all channels with small
# enough hit time were hit.
return event.Channels(t<1e8, t, q, self.flags.get())
class GPURays(object):
"""The GPURays class holds arrays of ray positions and directions
on the GPU that are used to render a geometry."""
def __init__(self, pos, dir, max_alpha_depth=10, nblocks=64):
self.pos = ga.to_gpu(to_float3(pos))
self.dir = ga.to_gpu(to_float3(dir))
self.max_alpha_depth = max_alpha_depth
self.nblocks = nblocks
transform_module = get_cu_module('transform.cu', options=cuda_options)
self.transform_funcs = GPUFuncs(transform_module)
render_module = get_cu_module('render.cu', options=cuda_options)
self.render_funcs = GPUFuncs(render_module)
self.dx = ga.empty(max_alpha_depth*self.pos.size, dtype=np.float32)
self.color = ga.empty(self.dx.size, dtype=ga.vec.float4)
self.dxlen = ga.zeros(self.pos.size, dtype=np.uint32)
def rotate(self, phi, n):
"Rotate by an angle phi around the axis `n`."
self.transform_funcs.rotate(np.int32(self.pos.size), self.pos, np.float32(phi), ga.vec.make_float3(*n), block=(self.nblocks,1,1), grid=(self.pos.size//self.nblocks+1,1))
self.transform_funcs.rotate(np.int32(self.dir.size), self.dir, np.float32(phi), ga.vec.make_float3(*n), block=(self.nblocks,1,1), grid=(self.dir.size//self.nblocks+1,1))
def rotate_around_point(self, phi, n, point):
""""Rotate by an angle phi around the axis `n` passing through
the point `point`."""
self.transform_funcs.rotate_around_point(np.int32(self.pos.size), self.pos, np.float32(phi), ga.vec.make_float3(*n), ga.vec.make_float3(*point), block=(self.nblocks,1,1), grid=(self.pos.size//self.nblocks+1,1))
self.transform_funcs.rotate(np.int32(self.dir.size), self.dir, np.float32(phi), ga.vec.make_float3(*n), block=(self.nblocks,1,1), grid=(self.dir.size//self.nblocks+1,1))
def translate(self, v):
"Translate the ray positions by the vector `v`."
self.transform_funcs.translate(np.int32(self.pos.size), self.pos, ga.vec.make_float3(*v), block=(self.nblocks,1,1), grid=(self.pos.size//self.nblocks+1,1))
def render(self, gpu_geometry, pixels, alpha_depth=10,
keep_last_render=False):
"""Render `gpu_geometry` and fill the GPU array `pixels` with pixel
colors."""
if not keep_last_render:
self.dxlen.fill(0)
if alpha_depth > self.max_alpha_depth:
raise Exception('alpha_depth > max_alpha_depth')
if not isinstance(pixels, ga.GPUArray):
raise TypeError('`pixels` must be a %s instance.' % ga.GPUArray)
if pixels.size != self.pos.size:
raise ValueError('`pixels`.size != number of rays')
self.render_funcs.render(np.int32(self.pos.size), self.pos, self.dir, gpu_geometry.gpudata, np.uint32(alpha_depth), pixels, self.dx, self.dxlen, self.color, block=(self.nblocks,1,1), grid=(self.pos.size//self.nblocks+1,1))
def snapshot(self, gpu_geometry, alpha_depth=10):
"Render `gpu_geometry` and return a numpy array of pixel colors."
pixels = ga.empty(self.pos.size, dtype=np.uint32)
self.render(gpu_geometry, pixels, alpha_depth)
return pixels.get()
def make_gpu_struct(size, members):
struct = cuda.mem_alloc(size)
i = 0
for member in members:
if isinstance(member, ga.GPUArray):
member = member.gpudata
if isinstance(member, cuda.DeviceAllocation):
if i % 8:
raise Exception('cannot align 64-bit pointer. '
'arrange struct member variables in order of '
'decreasing size.')
cuda.memcpy_htod(int(struct)+i, np.intp(int(member)))
i += 8
elif np.isscalar(member):
cuda.memcpy_htod(int(struct)+i, member)
i += member.nbytes
else:
raise TypeError('expected a GPU device pointer or scalar type.')
return struct
def format_size(size):
if size < 1e3:
return '%.1f%s' % (size, ' ')
elif size < 1e6:
return '%.1f%s' % (size/1e3, 'K')
elif size < 1e9:
return '%.1f%s' % (size/1e6, 'M')
else:
return '%.1f%s' % (size/1e9, 'G')
def format_array(name, array):
return '%-15s %6s %6s' % \
(name, format_size(len(array)), format_size(array.nbytes))
class GPUGeometry(object):
def __init__(self, geometry, wavelengths=None, print_usage=False):
if wavelengths is None:
wavelengths = standard_wavelengths
try:
wavelength_step = np.unique(np.diff(wavelengths)).item()
except ValueError:
raise ValueError('wavelengths must be equally spaced apart.')
geometry_source = get_cu_source('geometry.h')
material_struct_size = characterize.sizeof('Material', geometry_source)
surface_struct_size = characterize.sizeof('Surface', geometry_source)
geometry_struct_size = characterize.sizeof('Geometry', geometry_source)
self.material_data = []
self.material_ptrs = []
def interp_material_property(wavelengths, property):
# note that it is essential that the material properties be
# interpolated linearly. this fact is used in the propagation
# code to guarantee that probabilities still sum to one.
return np.interp(wavelengths, property[:,0], property[:,1]).astype(np.float32)
for i in range(len(geometry.unique_materials)):
material = geometry.unique_materials[i]
if material is None:
raise Exception('one or more triangles is missing a material.')
refractive_index = interp_material_property(wavelengths, material.refractive_index)
refractive_index_gpu = ga.to_gpu(refractive_index)
absorption_length = interp_material_property(wavelengths, material.absorption_length)
absorption_length_gpu = ga.to_gpu(absorption_length)
scattering_length = interp_material_property(wavelengths, material.scattering_length)
scattering_length_gpu = ga.to_gpu(scattering_length)
self.material_data.append(refractive_index_gpu)
self.material_data.append(absorption_length_gpu)
self.material_data.append(scattering_length_gpu)
material_gpu = \
make_gpu_struct(material_struct_size,
[refractive_index_gpu, absorption_length_gpu,
scattering_length_gpu,
np.uint32(len(wavelengths)),
np.float32(wavelength_step),
np.float32(wavelengths[0])])
self.material_ptrs.append(material_gpu)
self.material_pointer_array = \
make_gpu_struct(8*len(self.material_ptrs), self.material_ptrs)
self.surface_data = []
self.surface_ptrs = []
for i in range(len(geometry.unique_surfaces)):
surface = geometry.unique_surfaces[i]
if surface is None:
# need something to copy to the surface array struct
# that is the same size as a 64-bit pointer.
# this pointer will never be used by the simulation.
self.surface_ptrs.append(np.uint64(0))
continue
detect = interp_material_property(wavelengths, surface.detect)
detect_gpu = ga.to_gpu(detect)
absorb = interp_material_property(wavelengths, surface.absorb)
absorb_gpu = ga.to_gpu(absorb)
reflect_diffuse = interp_material_property(wavelengths, surface.reflect_diffuse)
reflect_diffuse_gpu = ga.to_gpu(reflect_diffuse)
reflect_specular = interp_material_property(wavelengths, surface.reflect_specular)
reflect_specular_gpu = ga.to_gpu(reflect_specular)
self.surface_data.append(detect_gpu)
self.surface_data.append(absorb_gpu)
self.surface_data.append(reflect_diffuse_gpu)
self.surface_data.append(reflect_specular_gpu)
surface_gpu = \
make_gpu_struct(surface_struct_size,
[detect_gpu, absorb_gpu,
reflect_diffuse_gpu,
reflect_specular_gpu,
np.uint32(len(wavelengths)),
np.float32(wavelength_step),
np.float32(wavelengths[0])])
self.surface_ptrs.append(surface_gpu)
self.surface_pointer_array = \
make_gpu_struct(8*len(self.surface_ptrs), self.surface_ptrs)
self.vertices = ga.to_gpu(to_float3(geometry.mesh.vertices))
self.triangles = ga.to_gpu(to_uint3(geometry.mesh.triangles))
material_codes = (((geometry.material1_index & 0xff) << 24) |
((geometry.material2_index & 0xff) << 16) |
((geometry.surface_index & 0xff) << 8)).astype(np.uint32)
self.material_codes = ga.to_gpu(material_codes)
self.lower_bounds = ga.to_gpu(to_float3(geometry.lower_bounds))
self.upper_bounds = ga.to_gpu(to_float3(geometry.upper_bounds))
self.colors = ga.to_gpu(geometry.colors.astype(np.uint32))
self.node_map = ga.to_gpu(geometry.node_map.astype(np.uint32))
self.node_map_end = ga.to_gpu(geometry.node_map_end.astype(np.uint32))
self.solid_id_map = ga.to_gpu(geometry.solid_id.astype(np.uint32))
self.gpudata = make_gpu_struct(geometry_struct_size,
[self.vertices, self.triangles,
self.material_codes,
self.colors, self.lower_bounds,
self.upper_bounds, self.node_map,
self.node_map_end,
self.material_pointer_array,
self.surface_pointer_array,
np.uint32(geometry.start_node),
np.uint32(geometry.first_node)])
self.geometry = geometry
if print_usage:
self.print_device_usage()
def print_device_usage(self):
print 'device usage:'
print '-'*10
print format_array('vertices', self.vertices)
print format_array('triangles', self.triangles)
print format_array('lower_bounds', self.lower_bounds)
print format_array('upper_bounds', self.upper_bounds)
print format_array('node_map', self.node_map)
print format_array('node_map_end', self.node_map_end)
print '%-15s %6s %6s' % ('total', '', format_size(self.vertices.nbytes + self.triangles.nbytes + self.lower_bounds.nbytes + self.upper_bounds.nbytes + self.node_map.nbytes + self.node_map_end.nbytes))
print '-'*10
free, total = cuda.mem_get_info()
print '%-15s %6s %6s' % ('device total', '', format_size(total))
print '%-15s %6s %6s' % ('device used', '', format_size(total-free))
print '%-15s %6s %6s' % ('device free', '', format_size(free))
print
def reset_colors(self):
self.colors.set_async(self.geometry.colors.astype(np.uint32))
def color_solids(self, solid_hit, colors, nblocks_per_thread=64,
max_blocks=1024):
solid_hit_gpu = ga.to_gpu(np.array(solid_hit, dtype=np.bool))
solid_colors_gpu = ga.to_gpu(np.array(colors, dtype=np.uint32))
module = get_cu_module('mesh.h', options=cuda_options)
color_solids = module.get_function('color_solids')
for first_triangle, triangles_this_round, blocks in \
chunk_iterator(self.triangles.size, nblocks_per_thread,
max_blocks):
color_solids(np.int32(first_triangle),
np.int32(triangles_this_round), self.solid_id_map,
solid_hit_gpu, solid_colors_gpu, self.gpudata,
block=(nblocks_per_thread,1,1),
grid=(blocks,1))
class GPUDaq(object):
def __init__(self, gpu_geometry, max_pmt_id, pmt_rms=1.2e-9):
self.earliest_time_gpu = ga.empty(max_pmt_id+1, dtype=np.float32)
self.earliest_time_int_gpu = ga.empty(max_pmt_id+1, dtype=np.uint32)
self.channel_history_gpu = ga.zeros_like(self.earliest_time_int_gpu)
self.channel_q_gpu = ga.zeros_like(self.earliest_time_int_gpu)
self.daq_pmt_rms = pmt_rms
self.solid_id_map_gpu = gpu_geometry.solid_id_map
self.module = get_cu_module('daq.cu', options=cuda_options,
include_source_directory=False)
self.gpu_funcs = GPUFuncs(self.module)
def acquire(self, gpuphotons, rng_states, nthreads_per_block=64, max_blocks=1024):
self.gpu_funcs.reset_earliest_time_int(np.float32(1e9), np.int32(len(self.earliest_time_int_gpu)), self.earliest_time_int_gpu, block=(nthreads_per_block,1,1), grid=(len(self.earliest_time_int_gpu)//nthreads_per_block+1,1))
self.channel_q_gpu.fill(0)
self.channel_history_gpu.fill(0)
n = len(gpuphotons.pos)
for first_photon, photons_this_round, blocks in \
chunk_iterator(n, nthreads_per_block, max_blocks):
self.gpu_funcs.run_daq(rng_states, np.uint32(0x1 << 2), np.float32(self.daq_pmt_rms), np.int32(first_photon), np.int32(photons_this_round), gpuphotons.t, gpuphotons.flags, gpuphotons.last_hit_triangles, self.solid_id_map_gpu, np.int32(len(self.earliest_time_int_gpu)), self.earliest_time_int_gpu, self.channel_q_gpu, self.channel_history_gpu, block=(nthreads_per_block,1,1), grid=(blocks,1))
self.gpu_funcs.convert_sortable_int_to_float(np.int32(len(self.earliest_time_int_gpu)), self.earliest_time_int_gpu, self.earliest_time_gpu, block=(nthreads_per_block,1,1), grid=(len(self.earliest_time_int_gpu)//nthreads_per_block+1,1))
return GPUChannels(self.earliest_time_gpu, self.channel_q_gpu, self.channel_history_gpu)
class GPUPDF(object):
def __init__(self):
self.module = get_cu_module('daq.cu', options=cuda_options,
include_source_directory=False)
self.gpu_funcs = GPUFuncs(self.module)
def setup_pdf(self, max_pmt_id, tbins, trange, qbins, qrange):
"""Setup GPU arrays to hold PDF information.
max_pmt_id: int, largest PMT id #
tbins: number of time bins
trange: tuple of (min, max) time in PDF
qbins: number of charge bins
qrange: tuple of (min, max) charge in PDF
"""
self.events_in_histogram = 0
self.hitcount_gpu = ga.zeros(max_pmt_id+1, dtype=np.uint32)
self.pdf_gpu = ga.zeros(shape=(max_pmt_id+1, tbins, qbins),
dtype=np.uint32)
self.tbins = tbins
self.trange = trange
self.qbins = qbins
self.qrange = qrange
def clear_pdf(self):
"""Rezero the PDF counters."""
self.hitcount_gpu.fill(0)
self.pdf_gpu.fill(0)
def add_hits_to_pdf(self, gpuchannels, nthreads_per_block=64):
self.gpu_funcs.bin_hits(np.int32(len(self.hitcount_gpu)),
gpuchannels.q,
gpuchannels.t,
self.hitcount_gpu,
np.int32(self.tbins),
np.float32(self.trange[0]),
np.float32(self.trange[1]),
np.int32(self.qbins),
np.float32(self.qrange[0]),
np.float32(self.qrange[1]),
self.pdf_gpu,
block=(nthreads_per_block,1,1),
grid=(len(gpuchannels.t)//nthreads_per_block+1,1))
self.events_in_histogram += 1
def get_pdfs(self):
"""Returns the 1D hitcount array and the 3D [channel, time, charge]
histogram."""
return self.hitcount_gpu.get(), self.pdf_gpu.get()
def setup_pdf_eval(self, event_hit, event_time, event_charge, min_twidth,
trange, min_qwidth, qrange, min_bin_content=10,
time_only=True):
"""Setup GPU arrays to compute PDF values for the given event.
The pdf_eval calculation allows the PDF to be evaluated at a
single point for each channel as the Monte Carlo is run. The
effective bin size will be as small as (`min_twidth`,
`min_qwidth`) around the point of interest, but will be large
enough to ensure that `min_bin_content` Monte Carlo events
fall into the bin.
event_hit: ndarray
Hit or not-hit status for each channel in the detector.
event_time: ndarray
Hit time for each channel in the detector. If channel
not hit, the time will be ignored.
event_charge: ndarray
Integrated charge for each channel in the detector.
If channel not hit, the charge will be ignored.
min_twidth: float
Minimum bin size in the time dimension
trange: (float, float)
Range of time dimension in PDF
min_qwidth: float
Minimum bin size in charge dimension
qrange: (float, float)
Range of charge dimension in PDF
min_bin_content: int
The bin will be expanded to include at least this many events
time_only: bool
If True, only the time observable will be used in the PDF.
"""
self.event_hit_gpu = ga.to_gpu(event_hit.astype(np.uint32))
self.event_time_gpu = ga.to_gpu(event_time.astype(np.float32))
self.event_charge_gpu = ga.to_gpu(event_charge.astype(np.float32))
self.eval_hitcount_gpu = ga.zeros(len(event_hit), dtype=np.uint32)
self.eval_bincount_gpu = ga.zeros(len(event_hit), dtype=np.uint32)
self.nearest_mc_gpu = ga.empty(shape=len(event_hit) * min_bin_content,
dtype=np.float32)
self.nearest_mc_gpu.fill(1e9)
self.min_twidth = min_twidth
self.trange = trange
self.min_qwidth = min_qwidth
self.qrange = qrange
self.min_bin_content = min_bin_content
self.time_only = time_only
def clear_pdf_eval(self):
"Reset PDF evaluation counters to start accumulating new Monte Carlo."
self.eval_hitcount_gpu.fill(0)
self.eval_bincount_gpu.fill(0)
self.nearest_mc_gpu.fill(1e9)
def accumulate_pdf_eval(self, gpuchannels, nthreads_per_block=64):
"Add the most recent results of run_daq() to the PDF evaluation."
self.gpu_funcs.accumulate_pdf_eval(np.int32(self.time_only),
np.int32(len(self.event_hit_gpu)),
self.event_hit_gpu,
self.event_time_gpu,
self.event_charge_gpu,
gpuchannels.t,
gpuchannels.q,
self.eval_hitcount_gpu,
self.eval_bincount_gpu,
np.float32(self.min_twidth),
np.float32(self.trange[0]),
np.float32(self.trange[1]),
np.float32(self.min_qwidth),
np.float32(self.qrange[0]),
np.float32(self.qrange[1]),
self.nearest_mc_gpu,
np.int32(self.min_bin_content),
block=(nthreads_per_block,1,1),
grid=(len(gpuchannels.t)//nthreads_per_block+1,1))
def get_pdf_eval(self):
evhit = self.event_hit_gpu.get().astype(bool)
hitcount = self.eval_hitcount_gpu.get()
bincount = self.eval_bincount_gpu.get()
pdf_value = np.zeros(len(hitcount), dtype=float)
pdf_frac_uncert = np.zeros_like(pdf_value)
# PDF value for high stats bins
high_stats = bincount >= self.min_bin_content
if high_stats.any():
if self.time_only:
pdf_value[high_stats] = bincount[high_stats].astype(float) / hitcount[high_stats] / self.min_twidth
else:
assert Exception('Unimplemented 2D (time,charge) mode!')
pdf_frac_uncert[high_stats] = 1.0/np.sqrt(bincount[high_stats])
# PDF value for low stats bins
low_stats = ~high_stats & (hitcount > 0) & evhit
nearest_mc = self.nearest_mc_gpu.get().reshape((len(hitcount), self.min_bin_content))
# Deal with the case where we did not even get min_bin_content events
# in the PDF but also clamp the lower range to ensure we don't index
# by a negative number in 2 lines
last_valid_entry = np.maximum(0, (nearest_mc < 1e9).astype(int).sum(axis=1) - 1)
distance = nearest_mc[np.arange(len(last_valid_entry)),last_valid_entry]
if low_stats.any():
if self.time_only:
pdf_value[low_stats] = (last_valid_entry[low_stats] + 1).astype(float) / hitcount[low_stats] / distance[low_stats] / 2.0
else:
assert Exception('Unimplemented 2D (time,charge) mode!')
pdf_frac_uncert[low_stats] = 1.0/np.sqrt(last_valid_entry[low_stats] + 1)
# PDFs with no stats got zero by default during array creation
print 'high_stats:', high_stats.sum(), 'low_stats', low_stats.sum()
return hitcount, pdf_value, pdf_value * pdf_frac_uncert
def create_context(device_id=None):
"""Initialize and return a GPU context on the specified device.
If device_id is None, the default device is used."""
try:
cuda.mem_get_info()
except cuda.LogicError:
# initialize cuda
cuda.init()
if device_id is None:
context = pycuda.tools.make_default_context()
else:
device = cuda.Device(device_id)
context = device.make_context()
context.set_cache_config(cuda.func_cache.PREFER_L1)
return context
class GPU(object):
def __init__(self, device_id=None):
"""Initialize a GPU context on the specified device.
If device_id is None, the default device is used."""
if device_id is None:
self.context = pycuda.tools.make_default_context()
else:
device = cuda.Device(device_id)
self.context = device.make_context()
print 'device %s' % self.context.get_device().name()
self.print_mem_info()
self.context.set_cache_config(cuda.func_cache.PREFER_L1)
def print_mem_info(self):
free, total = cuda.mem_get_info()
print '%.1f %% of device memory is free.' % ((free/float(total))*100)
def __del__(self):
self.context.pop()
|