summaryrefslogtreecommitdiff
path: root/geometry.py
blob: b2cb9c034289cbb27e6b6dfd5682ac6c05984ce5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
import sys
import os
import numpy as np
from chroma.itertoolset import *
from chroma.tools import timeit, profile_if_possible
from hashlib import md5
import cPickle as pickle
import gzip

# all material/surface properties are interpolated at these
# wavelengths when they are sent to the gpu
standard_wavelengths = np.arange(200, 810, 20).astype(np.float32)

class Mesh(object):
    def __init__(self, vertices, triangles, remove_duplicate_vertices=False):
        vertices = np.asarray(vertices, dtype=np.float32)
        triangles = np.asarray(triangles, dtype=np.int32)

        if len(vertices.shape) != 2 or vertices.shape[1] != 3:
            raise ValueError('shape mismatch')

        if len(triangles.shape) != 2 or triangles.shape[1] != 3:
            raise ValueError('shape mismatch')

        if (triangles < 0).any():
            raise ValueError('indices in `triangles` must be positive.')

        if (triangles >= len(vertices)).any():
            raise ValueError('indices in `triangles` must be less than the '
                             'length of the vertex array.')

        self.vertices = vertices
        self.triangles = triangles

        if remove_duplicate_vertices:
            self.remove_duplicate_vertices()

    def get_bounds(self):
        "Return the lower and upper bounds for the mesh as a tuple."
        return np.min(self.vertices, axis=0), np.max(self.vertices, axis=0)

    def remove_duplicate_vertices(self):
        "Remove any duplicate vertices in the mesh."
        # view the vertices as a structured array in order to identify unique
        # rows, i.e. unique vertices
        unique_vertices, inverse = np.unique(self.vertices.view([('', self.vertices.dtype)]*self.vertices.shape[1]), return_inverse=True)
        # turn the structured vertex array back into a normal array
        self.vertices = unique_vertices.view(self.vertices.dtype).reshape((unique_vertices.shape[0], self.vertices.shape[1]))
        # remap the triangles to the unique vertices
        self.triangles = np.vectorize(lambda i: inverse[i])(self.triangles)

    def assemble(self, key=slice(None), group=True):
        """
        Return an assembled triangle mesh; i.e. return the vertex positions
        of every triangle. If `group` is True, the array returned will have
        an extra axis denoting the triangle number; i.e. if the mesh contains
        N triangles, the returned array will have the shape (N,3,3). If `group`
        is False, return just the vertex positions without any grouping; in
        this case the grouping is implied (i.e. elements [0:3] are the first
        triangle, [3:6] the second, and so on.

        The `key` argument is a slice object if you just want to assemble
        a certain range of the triangles, i.e. to get the assembled mesh for
        triangles 3 through 6, key = slice(3,7).
        """
        if group:
            vertex_indices = self.triangles[key]
        else:
            vertex_indices = self.triangles[key].flatten()

        return self.vertices[vertex_indices]

    def __add__(self, other):
        return Mesh(np.concatenate((self.vertices, other.vertices)), np.concatenate((self.triangles, other.triangles + len(self.vertices))))

class Solid(object):
    def __init__(self, mesh, material1=None, material2=None, surface=None, color=0xffffff):
        self.mesh = mesh

        if np.iterable(material1):
            if len(material1) != len(mesh.triangles):
                raise ValueError('shape mismatch')
            self.material1 = np.array(material1, dtype=np.object)
        else:
            self.material1 = np.tile(material1, len(self.mesh.triangles))

        if np.iterable(material2):
            if len(material2) != len(mesh.triangles):
                raise ValueError('shape mismatch')
            self.material2 = np.array(material2, dtype=np.object)
        else:
            self.material2 = np.tile(material2, len(self.mesh.triangles))

        if np.iterable(surface):
            if len(surface) != len(mesh.triangles):
                raise ValueError('shape mismatch')
            self.surface = np.array(surface, dtype=np.object)
        else:
            self.surface = np.tile(surface, len(self.mesh.triangles))

        if np.iterable(color):
            if len(color) != len(mesh.triangles):
                raise ValueError('shape mismatch')
            self.color = np.array(color, dtype=np.uint32)
        else:
            self.color = np.tile(color, len(self.mesh.triangles)).astype(np.uint32)

        self.unique_materials = \
            np.unique(np.concatenate([self.material1, self.material2]))

        self.unique_surfaces = np.unique(self.surface)

    def __add__(self, other):
        return Solid(self.mesh + other.mesh, np.concatenate((self.material1, other.material1)), np.concatenate((self.material2, other.material2)), np.concatenate((self.surface, other.surface)), np.concatenate((self.color, other.color)))

class Material(object):
    """Material optical properties."""
    def __init__(self, name='none'):
        self.name = name

        self.refractive_index = None
        self.absorption_length = None
        self.scattering_length = None
        self.density = 0.0 # g/cm^3
        self.composition = {} # by mass

    def set(self, name, value, wavelengths=standard_wavelengths):
        if np.iterable(value):
            if len(value) != len(wavelengths):
                raise ValueError('shape mismatch')
        else:
            value = np.tile(value, len(wavelengths))

        self.__dict__[name] = np.array(zip(wavelengths, value), dtype=np.float32)

class Surface(object):
    """Surface optical properties."""
    def __init__(self, name='none'):
        self.name = name

        self.set('detect', 0)
        self.set('absorb', 0)
        self.set('reflect_diffuse', 0)
        self.set('reflect_specular', 0)

    def set(self, name, value, wavelengths=standard_wavelengths):
        if np.iterable(value):
            if len(value) != len(wavelengths):
                raise ValueError('shape mismatch')
        else:
            value = np.tile(value, len(wavelengths))

        if (np.asarray(value) < 0.0).any():
            raise Exception('all probabilities must be >= 0.0')

        self.__dict__[name] = np.array(zip(wavelengths, value), dtype=np.float32)

def interleave(arr, bits):
    """
    Interleave the bits of quantized three-dimensional points in space.

    Example
        >>> interleave(np.identity(3, dtype=np.int))
        array([4, 2, 1], dtype=uint64)
    """
    if len(arr.shape) != 2 or arr.shape[1] != 3:
        raise Exception('shape mismatch')

    z = np.zeros(arr.shape[0], dtype=np.uint64)
    for i in range(bits):
        z |= (arr[:,2] & 1 << i) << (2*i) | \
             (arr[:,1] & 1 << i) << (2*i+1) | \
             (arr[:,0] & 1 << i) << (2*i+2)
    return z

def morton_order(mesh, bits):
    """
    Return a list of zvalues for triangles in `mesh` by interleaving the
    bits of the quantized center coordinates of each triangle. Each coordinate
    axis is quantized into 2**bits bins.
    """
    lower_bound, upper_bound = mesh.get_bounds()

    if bits <= 0 or bits > 21:
        raise Exception('number of bits must be in the range (0,21].')

    max_value = 2**bits - 1

    def quantize(x):
        return np.uint64((x-lower_bound)*max_value/(upper_bound-lower_bound))

    mean_positions = quantize(np.mean(mesh.assemble(), axis=1))

    return interleave(mean_positions, bits)

class Geometry(object):
    def __init__(self):
        self.solids = []
        self.solid_rotations = []
        self.solid_displacements = []

    def add_solid(self, solid, rotation=np.identity(3), displacement=(0,0,0)):
        """
        Add the solid `solid` to the geometry. When building the final triangle
        mesh, `solid` will be placed by rotating it with the rotation matrix
        `rotation` and displacing it by the vector `displacement`.
        """

        rotation = np.asarray(rotation, dtype=np.float32)

        if rotation.shape != (3,3):
            raise ValueError('rotation matrix has the wrong shape.')

        self.solid_rotations.append(rotation.astype(np.float32))

        displacement = np.asarray(displacement, dtype=np.float32)

        if displacement.shape != (3,):
            raise ValueError('displacement vector has the wrong shape.')

        self.solid_displacements.append(displacement)

        self.solids.append(solid)

        return len(self.solids)-1

    @timeit
    def build(self, bits=8, shift=3, use_cache=True):
        """
        Build the bounding volume hierarchy, material/surface code arrays, and
        color array for this geometry. If the bounding volume hierarchy is
        cached, load the cache instead of rebuilding, else build and cache it.

        Args:
            - bits: int, *optional*
                The number of bits to quantize each linear dimension with when
                morton ordering the triangle centers for building the bounding
                volume hierarchy. Defaults to 8.
            - shift: int, *optional*
                The number of bits to shift the zvalue of each node when
                building the next layer of the bounding volume hierarchy.
                Defaults to 3.
            - use_cache: bool, *optional*
                If true, the on-disk cache in ~/.chroma/ will be checked for
                a previously built version of this geometry, otherwise the
                BVH will be computed and saved to the cache.  If false,
                the cache is ignored and also not updated.
        """
        nv = np.cumsum([0] + [len(solid.mesh.vertices) for solid in self.solids])
        nt = np.cumsum([0] + [len(solid.mesh.triangles) for solid in self.solids])

        vertices = np.empty((nv[-1],3), dtype=np.float32)
        triangles = np.empty((nt[-1],3), dtype=np.uint32)

        for i, solid in enumerate(self.solids):
            vertices[nv[i]:nv[i+1]] = \
                np.inner(solid.mesh.vertices, self.solid_rotations[i]) + self.solid_displacements[i]
            triangles[nt[i]:nt[i+1]] = solid.mesh.triangles + nv[i]

        self.mesh = Mesh(vertices, triangles)

        self.colors = np.concatenate([solid.color for solid in self.solids])

        self.solid_id = np.concatenate([np.fromiter(repeat(i, len(solid.mesh.triangles)), dtype=np.uint32) for i, solid in enumerate(self.solids)])

        self.unique_materials = list(np.unique(np.concatenate([solid.unique_materials for solid in self.solids])))

        material_lookup = dict(zip(self.unique_materials, range(len(self.unique_materials))))

        self.material1_index = np.fromiter(imap(material_lookup.get, chain(*[solid.material1 for solid in self.solids])), dtype=np.int32)

        self.material2_index = np.fromiter(imap(material_lookup.get, chain(*[solid.material2 for solid in self.solids])), dtype=np.int32)

        self.unique_surfaces = list(np.unique(np.concatenate([solid.unique_surfaces for solid in self.solids])))

        surface_lookup = dict(zip(self.unique_surfaces, range(len(self.unique_surfaces))))

        self.surface_index = np.fromiter(imap(surface_lookup.get, chain(*[solid.surface for solid in self.solids])), dtype=np.int32)

        try:
            self.surface_index[self.surface_index == surface_lookup[None]] = -1
        except KeyError:
            pass

        checksum = md5(str(bits))
        checksum.update(str(shift))
        checksum.update(self.mesh.vertices)
        checksum.update(self.mesh.triangles)

        cache_dir = os.path.expanduser('~/.chroma')
        cache_file = checksum.hexdigest()
        cache_path = os.path.join(cache_dir, cache_file)

        if use_cache:
            try:
                f = gzip.GzipFile(cache_path, 'rb')
            except IOError:
                pass
            else:
                print 'loading cache.'
                data = pickle.load(f)

                reorder = data.pop('reorder')
                self.mesh.triangles = self.mesh.triangles[reorder]
                self.material1_index = self.material1_index[reorder]
                self.material2_index = self.material2_index[reorder]
                self.surface_index = self.surface_index[reorder]
                self.colors = self.colors[reorder]
                self.solid_id = self.solid_id[reorder]

                for key, value in data.iteritems():
                    setattr(self, key, value)
                f.close()
                return

        zvalues_mesh = morton_order(self.mesh, bits)
        reorder = np.argsort(zvalues_mesh)
        zvalues_mesh = zvalues_mesh[reorder]

        if (np.diff(zvalues_mesh) < 0).any():
            raise Exception('zvalues_mesh out of order.')

        self.mesh.triangles = self.mesh.triangles[reorder]

        self.material1_index = self.material1_index[reorder]
        self.material2_index = self.material2_index[reorder]
        self.surface_index = self.surface_index[reorder]
        self.colors = self.colors[reorder]
        self.solid_id = self.solid_id[reorder]

        unique_zvalues = np.unique(zvalues_mesh)

        self.lower_bounds = np.empty((unique_zvalues.size,3), dtype=np.float32)
        self.upper_bounds = np.empty((unique_zvalues.size,3), dtype=np.float32)

        assembled_mesh = self.mesh.assemble(group=False)
        self.node_map = np.searchsorted(zvalues_mesh, unique_zvalues)
        self.node_map_end = np.searchsorted(zvalues_mesh, unique_zvalues, side='right')

        for i, (zi1, zi2) in enumerate(izip(self.node_map, self.node_map_end)):
            self.lower_bounds[i] = assembled_mesh[zi1*3:zi2*3].min(axis=0)
            self.upper_bounds[i] = assembled_mesh[zi1*3:zi2*3].max(axis=0)

        self.layers = np.zeros(unique_zvalues.size, dtype=np.uint32)
        self.first_node = unique_zvalues.size

        begin_last_layer = 0

        for layer in count(1):
            bit_shifted_zvalues = unique_zvalues >> shift
            unique_zvalues = np.unique(bit_shifted_zvalues)

            i0 = begin_last_layer + bit_shifted_zvalues.size

            self.node_map.resize(self.node_map.size+unique_zvalues.size)
            self.node_map[i0:] = np.searchsorted(bit_shifted_zvalues, unique_zvalues) + begin_last_layer
            self.node_map_end.resize(self.node_map_end.size+unique_zvalues.size)
            self.node_map_end[i0:] = np.searchsorted(bit_shifted_zvalues, unique_zvalues, side='right') + begin_last_layer

            self.layers.resize(self.layers.size+unique_zvalues.size)
            self.layers[i0:] = layer

            self.lower_bounds.resize((self.lower_bounds.shape[0]+unique_zvalues.size,3))
            self.upper_bounds.resize((self.upper_bounds.shape[0]+unique_zvalues.size,3))

            for i, zi1, zi2 in izip(count(i0), self.node_map[i0:], self.node_map_end[i0:]):
                self.lower_bounds[i] = self.lower_bounds[zi1:zi2].min(axis=0)
                self.upper_bounds[i] = self.upper_bounds[zi1:zi2].max(axis=0)

            begin_last_layer += bit_shifted_zvalues.size

            if unique_zvalues.size == 1:
                break

        if use_cache:
            print >>sys.stderr, 'Writing BVH to cache directory...'

            if not os.path.exists(cache_dir):
                os.makedirs(cache_dir)

            with gzip.GzipFile(cache_path, 'wb', compresslevel=1) as f:
                data = {}
                for key in ['lower_bounds', 'upper_bounds', 'node_map', 'node_map_end', 'layers', 'first_node']:
                    data[key] = getattr(self, key)
                data['reorder'] = reorder
                pickle.dump(data, f, -1)