summaryrefslogtreecommitdiff
path: root/g4gen.py
blob: 6766d42c1f1850ef55aa8bfbeecb3bdc5aee4fd5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from Geant4 import *
import g4py.ezgeom
import g4py.NISTmaterials
import g4py.ParticleGun
import pyublas
import numpy as np
import pi0

try:
    import G4chroma
except:
    # Try building the module
    import subprocess
    import sys, os
    module_dir = os.path.split(os.path.realpath(__file__))[0]
    print >>sys.stderr, 'Compiling G4chroma.so...'
    retcode = subprocess.call('g++ -o \'%s/G4chroma.so\' -shared \'%s/G4chroma.cc\' -fPIC `geant4-config --cflags --libs` `python-config --cflags --libs --ldflags` -lboost_python' % (module_dir, module_dir), shell=True)
    assert retcode == 0
    import G4chroma

class G4Generator(object):
    def __init__(self, material, seed=None):
        '''Create generator to produce photons inside the specified material.

           material: chroma.geometry.Material object with density, 
                     composition dict and refractive_index.

                     composition dictionary should be 
                        { element_symbol : fraction_by_weight, ... }.
           seed: Random number generator seed for HepRandom. If None,
                 generator is not seeded.
        '''
        if seed is not None:
            HepRandom.setTheSeed(seed)

        g4py.NISTmaterials.Construct()
        g4py.ezgeom.Construct()
        self.physics_list = G4chroma.ChromaPhysicsList()
        gRunManager.SetUserInitialization(self.physics_list)
        self.particle_gun = g4py.ParticleGun.Construct()
        
        self.world_material = self.create_g4material(material)
        g4py.ezgeom.SetWorldMaterial(self.world_material)

        self.world = g4py.ezgeom.G4EzVolume('world')
        self.world.CreateBoxVolume(self.world_material, 100*m, 100*m, 100*m)
        self.world.PlaceIt(G4ThreeVector(0,0,0))

        self.tracking_action = G4chroma.PhotonTrackingAction()
        gRunManager.SetUserAction(self.tracking_action)
        gRunManager.Initialize()

    def create_g4material(self, material):
        g4material = G4Material('world_material', material.density * g / cm3,
                                len(material.composition))

        # Add elements
        for element_name, element_frac_by_weight in material.composition.items():
            g4material.AddElement(G4Element.GetElement(element_name, True),
                                  element_frac_by_weight)

        # Set index of refraction
        prop_table = G4MaterialPropertiesTable()
        # Reverse entries so they are in ascending energy order rather
        # than wavelength
        energy = list((2*pi*hbarc / (material.refractive_index[::-1,0] * nanometer)).astype(float))
        values = list(material.refractive_index[::-1, 1].astype(float))
        prop_table.AddProperty('RINDEX', energy, values)

        # Load properties
        g4material.SetMaterialPropertiesTable(prop_table)
        return g4material

    def generate_pi0(self, total_energy, position, direction):
        '''Use GEANT4 to generate photons produced by a pi0 decay.

        pi0 event will be generated by running two gammas with the appropriate
        energy and angular distribution.

               total_energy: Total energy of pi0 (incl rest mass) in MeV
               position: 3-tuple of position of particle in global coordinates
               direction: 3-tuple direction vector.  
                          Does not have to be normalized.
        '''
        direction = direction / np.linalg.norm(direction)
        
        cos_theta_rest = np.random.random_sample() * 2 - 1
        theta_rest = np.arccos(cos_theta_rest)
        phi_rest = np.random.random_sample() * 2 * np.pi

        (gamma1_e, gamma1_dir), (gamma2_e, gamma2_dir) = pi0.pi0_decay(energy=total_energy,
                                                                       direction=direction,
                                                                       theta=theta_rest,
                                                                       phi=phi_rest)

        gamma1 = self.generate_photons('gamma', gamma1_e, position, gamma1_dir)
        gamma2 = self.generate_photons('gamma', gamma2_e, position, gamma2_dir)

        photons = {'subtracks' : [ {'name':'gamma', 'pos': position, 't0' : 0.0,
                                    'dir' : gamma1_dir, 'total_e' : gamma1_e },
                                   {'name':'gamma', 'pos': position, 't0' : 0.0,
                                    'dir' : gamma2_dir, 'total_e' : gamma2_e } ]
                    }
        for key in gamma1.keys():
            photons[key] = np.concatenate((gamma1[key], gamma2[key]))
                                                                       
        return photons

    def generate_photons(self, particle_name, total_energy, position, direction):
        '''Use GEANT4 to generate photons produced by the given particle.
           
               particle_name: GEANT4 name of particle.  'e-', 'mu-', etc
               total_energy: Total energy of particle (incl rest mass) in MeV
               position: 3-tuple of position of particle in global coordinates
               direction: 3-tuple direction vector.  
                          Does not have to be normalized.
        '''
        self.particle_gun.SetParticleByName(particle_name)
        self.particle_gun.SetParticleEnergy(total_energy * MeV)
        self.particle_gun.SetParticlePosition(G4ThreeVector(*position))
        self.particle_gun.SetParticleMomentumDirection(G4ThreeVector(*direction).unit())

        self.tracking_action.Clear()

        gRunManager.BeamOn(1)
        n = self.tracking_action.GetNumPhotons()        
        pos = np.zeros(shape=(n,3), dtype=np.float32)
        pos[:,0] = self.tracking_action.GetX()
        pos[:,1] = self.tracking_action.GetY()
        pos[:,2] = self.tracking_action.GetZ()

        dir = np.zeros(shape=(n,3), dtype=np.float32)
        dir[:,0] = self.tracking_action.GetDirX()
        dir[:,1] = self.tracking_action.GetDirY()
        dir[:,2] = self.tracking_action.GetDirZ()

        pol = np.zeros(shape=(n,3), dtype=np.float32)
        pol[:,0] = self.tracking_action.GetPolX()
        pol[:,1] = self.tracking_action.GetPolY()
        pol[:,2] = self.tracking_action.GetPolZ()
        
        wavelength = self.tracking_action.GetWavelength().astype(np.float32)
        t0 = self.tracking_action.GetT0().astype(np.float32)
        return { 'pos' : pos, 
                 'dir' : dir, 
                 'pol' : pol,
                 'wavelength' : wavelength, 
                 't0' : t0 }

if __name__ == '__main__':
    import time
    import optics
    gen = G4Generator(optics.water)
    # prime things
    gen.generate_photons('e-', 1, (0,0,0), (1,0,0))

    start = time.time()   
    n = 0
    for i in xrange(100):
        photons = gen.generate_photons('mu-', 700, (0,0,0), (1,0,0))
        n += len(photons['t0'])
        print photons['pos'][0].min(), photons['pos'][0].max()
    stop = time.time()
    print stop - start, 'sec'
    print n / (stop-start), 'photons/sec'