1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
from Geant4 import *
import g4py.ezgeom
import g4py.NISTmaterials
import g4py.ParticleGun
import pyublas
import numpy
try:
import G4chroma
except:
# Try building the module
import subprocess
import sys, os
module_dir = os.path.split(os.path.realpath(__file__))[0]
print >>sys.stderr, 'Compiling G4chroma.so...'
retcode = subprocess.call('g++ -o \'%s/G4chroma.so\' -shared \'%s/G4chroma.cc\' -fPIC `geant4-config --cflags --libs` `python-config --cflags --libs --ldflags` -lboost_python' % (module_dir, module_dir), shell=True)
assert retcode == 0
import G4chroma
class G4Generator(object):
def __init__(self, material, seed=None):
'''Create generator to produce photons inside the specified material.
material: chroma.geometry.Material object with density,
composition dict and refractive_index.
composition dictionary should be
{ element_symbol : fraction_by_weight, ... }.
seed: Random number generator seed for HepRandom. If None,
generator is not seeded.
'''
if seed is not None:
HepRandom.setTheSeed(seed)
g4py.NISTmaterials.Construct()
g4py.ezgeom.Construct()
self.physics_list = G4chroma.ChromaPhysicsList()
gRunManager.SetUserInitialization(self.physics_list)
self.particle_gun = g4py.ParticleGun.Construct()
self.world_material = self.create_g4material(material)
g4py.ezgeom.SetWorldMaterial(self.world_material)
self.world = g4py.ezgeom.G4EzVolume('world')
self.world.CreateBoxVolume(self.world_material, 100*m, 100*m, 100*m)
self.world.PlaceIt(G4ThreeVector(0,0,0))
self.tracking_action = G4chroma.PhotonTrackingAction()
gRunManager.SetUserAction(self.tracking_action)
gRunManager.Initialize()
def create_g4material(self, material):
g4material = G4Material('world_material', material.density * g / cm3,
len(material.composition))
# Add elements
for element_name, element_frac_by_weight in material.composition.items():
g4material.AddElement(G4Element.GetElement(element_name, True),
element_frac_by_weight)
# Set index of refraction
prop_table = G4MaterialPropertiesTable()
# Reverse entries so they are in ascending energy order rather
# than wavelength
energy = list((2*pi*hbarc / (material.refractive_index[::-1,0] * nanometer)).astype(float))
values = list(material.refractive_index[::-1, 1].astype(float))
prop_table.AddProperty('RINDEX', energy, values)
# Load properties
g4material.SetMaterialPropertiesTable(prop_table)
return g4material
def generate_photons(self, particle_name, total_energy, position, direction):
'''Use GEANT4 to generate photons produced by the given particle.
particle_name: GEANT4 name of particle. 'e-', 'mu-', etc
total_energy: Total energy of particle (incl rest mass) in MeV
position: 3-tuple of position of particle in global coordinates
direction: 3-tuple direction vector.
Does not have to be normalized.
'''
self.particle_gun.SetParticleByName(particle_name)
self.particle_gun.SetParticleEnergy(total_energy * MeV)
self.particle_gun.SetParticlePosition(G4ThreeVector(*position))
self.particle_gun.SetParticleMomentumDirection(G4ThreeVector(*direction).unit())
self.tracking_action.Clear()
gRunManager.BeamOn(1)
n = self.tracking_action.GetNumPhotons()
pos = numpy.zeros(shape=(n,3), dtype=numpy.float32)
pos[:,0] = self.tracking_action.GetX()
pos[:,1] = self.tracking_action.GetY()
pos[:,2] = self.tracking_action.GetZ()
dir = numpy.zeros(shape=(n,3), dtype=numpy.float32)
dir[:,0] = self.tracking_action.GetDirX()
dir[:,1] = self.tracking_action.GetDirY()
dir[:,2] = self.tracking_action.GetDirZ()
pol = numpy.zeros(shape=(n,3), dtype=numpy.float32)
pol[:,0] = self.tracking_action.GetPolX()
pol[:,1] = self.tracking_action.GetPolY()
pol[:,2] = self.tracking_action.GetPolZ()
wavelength = self.tracking_action.GetWavelength().astype(numpy.float32)
t0 = self.tracking_action.GetT0().astype(numpy.float32)
return { 'pos' : pos,
'dir' : dir,
'pol' : pol,
'wavelength' : wavelength,
't0' : t0 }
if __name__ == '__main__':
import time
import optics
gen = G4Generator(optics.water)
# prime things
gen.generate_photons('e-', 1, (0,0,0), (1,0,0))
start = time.time()
n = 0
for i in xrange(100):
photons = gen.generate_photons('mu-', 700, (0,0,0), (1,0,0))
n += len(photons['t0'])
print photons['pos'][0].min(), photons['pos'][0].max()
stop = time.time()
print stop - start, 'sec'
print n / (stop-start), 'photons/sec'
|