summaryrefslogtreecommitdiff
path: root/bin/chroma-cam
blob: 25f0eb33fc266ba0b38a619701e2d9a46f9fe17b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/env python
#--*-python-*-

if __name__ == '__main__':
    import optparse
    import sys
    import os

    from chroma import view, build, EventViewer
    from chroma import mesh_from_stl
    from chroma.tools import enable_debug_on_crash
    from chroma.log import logger, logging
    logger.setLevel(logging.INFO)

    parser = optparse.OptionParser('%prog')
    parser.add_option('--debug', dest='debug', action='store_true', 
                      default=False, help='Start python debugger on exception')
    parser.add_option('-r', '--resolution', dest='resolution',
                      help='specify window resolution', default='1024,576')
    parser.add_option('-i', dest='io_file', default=None)
    options, args = parser.parse_args()

    if len(args) < 1:
        sys.exit(parser.format_help())

    if options.debug:
        enable_debug_on_crash()

    size = [int(s) for s in options.resolution.split(',')]

    if os.path.exists(args[0]) and args[0].lower().endswith(('.stl', '.bz2')):
        obj = mesh_from_stl(args[0])
    else:
        module_name, function_name = args[0].rsplit('.', 1)

        try:
            module = __import__(module_name, fromlist=[function_name])
        except ImportError:
            raise

        obj = getattr(module, function_name)

    if options.io_file is None:
        view(obj, size)
    else:
        geometry = build(obj)
        viewer = EventViewer(geometry, options.io_file, size=size)
        viewer.start()
id='n453' href='#n453'>453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.

from __future__ import print_function, division
import numpy as np
from scipy.stats import iqr
import nlopt
from scipy.stats import poisson, norm
import contextlib
import sys
from math import exp
import emcee
from scipy.optimize import brentq
from scipy.stats import truncnorm
from matplotlib.lines import Line2D
from sddm.plot import despine
from sddm.dc import *
from sddm.plot_energy import *

try:
    from emcee import moves
except ImportError:
    print("emcee version 2.2.1 is required",file=sys.stderr)
    sys.exit(1)

# from https://stackoverflow.com/questions/2891790/how-to-pretty-print-a-numpy-array-without-scientific-notation-and-with-given-pre
@contextlib.contextmanager
def printoptions(*args, **kwargs):
    original = np.get_printoptions()
    np.set_printoptions(*args, **kwargs)
    try:
        yield
    finally: 
        np.set_printoptions(**original)

def radius_cut(ev):
    ev['radius_cut'] = np.digitize((ev.r/PSUP_RADIUS)**3,(0.9,))
    return ev

def udotr_cut(ev):
    ev['udotr_cut'] = np.digitize(ev.udotr,(-0.5,))
    return ev

def psi_cut(ev):
    ev['psi_cut'] = np.digitize(ev.psi,(6.0,))
    return ev

def cos_theta_cut(ev):
    ev['cos_theta_cut'] = np.digitize(ev.cos_theta,(-0.5,))
    return ev

def z_cut(ev):
    ev['z_cut'] = np.digitize(ev.z,(0.0,))
    return ev

# Constraint to enforce the fact that P(r,psi,z,udotr|muon) all add up to 1.0.
# In the likelihood function we set the last possibility for r and udotr equal
# to 1.0 minus the others. Therefore, we need to enforce the fact that the
# others must add up to less than 1.
muon_r_psi_z_udotr = Constraint(range(11,26))

# Constraint to enforce the fact that P(z,udotr|noise) all add up to 1.0. In
# the likelihood function we set the last possibility for r and udotr equal to
# 1.0 minus the others. Therefore, we need to enforce the fact that the others
# must add up to less than 1.
noise_z_udotr = Constraint(range(28,31))

# Constraint to enforce the fact that P(r,z,udotr|neck) all add up to 1.0. In
# the likelihood function we set the last possibility for r and udotr equal to
# 1.0 minus the others. Therefore, we need to enforce the fact that the others
# must add up to less than 1.
neck_r_z_udotr = Constraint(range(31,38))

# Constraint to enforce the fact that P(r,udotr|flasher) all add up to 1.0. In
# the likelihood function we set the last possibility for r and udotr equal to
# 1.0 minus the others. Therefore, we need to enforce the fact that the others
# must add up to less than 1
flasher_r_udotr = Constraint(range(39,42))

# Constraint to enforce the fact that P(r,udotr|breakdown) all add up to 1.0.
# In the likelihood function we set the last possibility for r and udotr equal
# to 1.0 minus the others. Therefore, we need to enforce the fact that the
# others must add up to less than 1.
breakdown_r_udotr = Constraint(range(44,47))

def make_nll(data, sacrifice, constraints, fitted_fraction):
    def nll(x, grad=None, fill_value=1e9):
        if grad is not None and grad.size > 0:
            raise Exception("nll got passed grad!")

        nll = 0.0
        # Here we explicitly return a crazy high value if one of the
        # constraints is violated. When using nlopt it should respect all the
        # constraints, *but* later when we do the Metropolis Hastings algorithm
        # we don't have any way to add the constraints explicitly.
        for constraint in constraints:
            if constraint(x) > 0:
                nll += fill_value + 1e4*constraint(x)**2

        if (x <= 0).any() or (x[6:] >= 1).any():
            nll += fill_value + 1e4*np.sum((x[x < 0])**2) + 1e4*np.sum((x[6:][x[6:] > 1]-1)**2)

        if nll:
            return nll

        (mu_signal, mu_muon, mu_noise, mu_neck, mu_flasher, mu_breakdown,
         contamination_muon, contamination_noise, contamination_neck, contamination_flasher, contamination_breakdown,
         p_r_psi_z_udotr_muon_lolololo, # 11
         p_r_psi_z_udotr_muon_lololohi,
         p_r_psi_z_udotr_muon_lolohilo,
         p_r_psi_z_udotr_muon_lolohihi,
         p_r_psi_z_udotr_muon_lohilolo,
         p_r_psi_z_udotr_muon_lohilohi,
         p_r_psi_z_udotr_muon_lohihilo,
         p_r_psi_z_udotr_muon_lohihihi,
         p_r_psi_z_udotr_muon_hilololo,
         p_r_psi_z_udotr_muon_hilolohi,
         p_r_psi_z_udotr_muon_hilohilo,
         p_r_psi_z_udotr_muon_hilohihi,
         p_r_psi_z_udotr_muon_hihilolo,
         p_r_psi_z_udotr_muon_hihilohi,
         p_r_psi_z_udotr_muon_hihihilo,
         p_r_noise_lo, p_psi_noise_lo, # 26, 27
         p_z_udotr_noise_lolo, # 28
         p_z_udotr_noise_lohi,
         p_z_udotr_noise_hilo,
         p_r_z_udotr_neck_lololo, # 31
         p_r_z_udotr_neck_lolohi,
         p_r_z_udotr_neck_lohilo,
         p_r_z_udotr_neck_lohihi,
         p_r_z_udotr_neck_hilolo,
         p_r_z_udotr_neck_hilohi,
         p_r_z_udotr_neck_hihilo,
         p_psi_neck_lo, # 38
         p_r_udotr_flasher_lolo, p_r_udotr_flasher_lohi, p_r_udotr_flasher_hilo, # 39, ..., 41
         p_psi_flasher_lo, p_z_flasher_lo,
         p_r_udotr_breakdown_lolo, p_r_udotr_breakdown_lohi, p_r_udotr_breakdown_hilo, # 44, ..., 46
         p_psi_breakdown_lo, p_z_breakdown_lo,
         p_neck_given_muon) = x

        p_r_udotr_flasher_hihi = 1-p_r_udotr_flasher_lolo-p_r_udotr_flasher_lohi-p_r_udotr_flasher_hilo
        p_r_udotr_breakdown_hihi = 1-p_r_udotr_breakdown_lolo-p_r_udotr_breakdown_lohi-p_r_udotr_breakdown_hilo
        p_r_psi_z_udotr_muon_hihihihi = 1 - \
            p_r_psi_z_udotr_muon_lolololo - \
            p_r_psi_z_udotr_muon_lololohi - \
            p_r_psi_z_udotr_muon_lolohilo - \
            p_r_psi_z_udotr_muon_lolohihi - \
            p_r_psi_z_udotr_muon_lohilolo - \
            p_r_psi_z_udotr_muon_lohilohi - \
            p_r_psi_z_udotr_muon_lohihilo - \
            p_r_psi_z_udotr_muon_lohihihi - \
            p_r_psi_z_udotr_muon_hilololo - \
            p_r_psi_z_udotr_muon_hilolohi - \
            p_r_psi_z_udotr_muon_hilohilo - \
            p_r_psi_z_udotr_muon_hilohihi - \
            p_r_psi_z_udotr_muon_hihilolo - \
            p_r_psi_z_udotr_muon_hihilohi - \
            p_r_psi_z_udotr_muon_hihihilo
        p_r_z_udotr_neck_hihihi = 1 - p_r_z_udotr_neck_lololo - p_r_z_udotr_neck_lolohi - p_r_z_udotr_neck_lohilo - p_r_z_udotr_neck_lohihi - p_r_z_udotr_neck_hilolo - p_r_z_udotr_neck_hilohi - p_r_z_udotr_neck_hihilo
        p_z_udotr_noise_hihi = 1 - p_z_udotr_noise_lolo - p_z_udotr_noise_lohi - p_z_udotr_noise_hilo

        # Muon events
        # first 6 parameters are the mean number of signal and bgs
        p_muon = np.array([\
            [[[p_r_psi_z_udotr_muon_lolololo, p_r_psi_z_udotr_muon_lololohi], \
              [p_r_psi_z_udotr_muon_lolohilo, p_r_psi_z_udotr_muon_lolohihi]], \
             [[p_r_psi_z_udotr_muon_lohilolo, p_r_psi_z_udotr_muon_lohilohi], \
              [p_r_psi_z_udotr_muon_lohihilo, p_r_psi_z_udotr_muon_lohihihi]]], \
            [[[p_r_psi_z_udotr_muon_hilololo, p_r_psi_z_udotr_muon_hilolohi], \
              [p_r_psi_z_udotr_muon_hilohilo, p_r_psi_z_udotr_muon_hilohihi]], \
             [[p_r_psi_z_udotr_muon_hihilolo, p_r_psi_z_udotr_muon_hihilohi], \
              [p_r_psi_z_udotr_muon_hihihilo, p_r_psi_z_udotr_muon_hihihihi]]]])
        expected_muon = p_muon*contamination_muon*mu_muon*fitted_fraction['muon'] + sacrifice['muon']*mu_signal

        nll -= fast_poisson_logpmf(data['muon'],expected_muon).sum()

        # Noise events
        p_r_noise = np.array([p_r_noise_lo,1-p_r_noise_lo])
        p_psi_noise = np.array([p_psi_noise_lo,1-p_psi_noise_lo])
        p_z_udotr_noise = np.array([\
            [p_z_udotr_noise_lolo,p_z_udotr_noise_lohi],
            [p_z_udotr_noise_hilo,p_z_udotr_noise_hihi]])
        p_noise = p_r_noise[:,np.newaxis,np.newaxis,np.newaxis]*p_psi_noise[:,np.newaxis,np.newaxis]*p_z_udotr_noise
        expected_noise = p_noise*contamination_noise*mu_noise*fitted_fraction['noise'] + sacrifice['noise']*mu_signal

        nll -= fast_poisson_logpmf(data['noise'],expected_noise).sum()

        # Neck events
        # FIXME: for now assume parameterized same as muon
        p_r_z_udotr_neck = np.array([\
            [[p_r_z_udotr_neck_lololo, p_r_z_udotr_neck_lolohi], \
             [p_r_z_udotr_neck_lohilo, p_r_z_udotr_neck_lohihi]], \
            [[p_r_z_udotr_neck_hilolo, p_r_z_udotr_neck_hilohi], \
             [p_r_z_udotr_neck_hihilo, p_r_z_udotr_neck_hihihi]]])
        p_psi_neck = np.array([p_psi_neck_lo,1-p_psi_neck_lo])
        p_neck = p_r_z_udotr_neck[:,np.newaxis,:,:]*p_psi_neck[:,np.newaxis,np.newaxis]
        expected_neck = p_neck*contamination_neck*mu_neck*fitted_fraction['neck'] + sacrifice['neck']*mu_signal
        # FIXME: pdf should be different for muon given neck
        expected_neck += p_muon*p_neck_given_muon*mu_muon*fitted_fraction['neck']

        nll -= fast_poisson_logpmf(data['neck'],expected_neck).sum()

        # Flasher events
        p_r_udotr_flasher = np.array([\
            [p_r_udotr_flasher_lolo,p_r_udotr_flasher_lohi], \
            [p_r_udotr_flasher_hilo,p_r_udotr_flasher_hihi]])
        p_psi_flasher = np.array([p_psi_flasher_lo,1-p_psi_flasher_lo])
        p_z_flasher = np.array([p_z_flasher_lo,1-p_z_flasher_lo])
        p_flasher = p_r_udotr_flasher[:,np.newaxis,np.newaxis,:]*p_psi_flasher[:,np.newaxis,np.newaxis]*p_z_flasher[:,np.newaxis]
        expected_flasher = p_flasher*contamination_flasher*mu_flasher*fitted_fraction['flasher'] + sacrifice['flasher']*mu_signal

        nll -= fast_poisson_logpmf(data['flasher'],expected_flasher).sum()

        # Breakdown events
        p_r_udotr_breakdown = np.array([\
            [p_r_udotr_breakdown_lolo,p_r_udotr_breakdown_lohi], \
            [p_r_udotr_breakdown_hilo,p_r_udotr_breakdown_hihi]])
        p_psi_breakdown = np.array([p_psi_breakdown_lo,1-p_psi_breakdown_lo])
        p_z_breakdown = np.array([p_z_breakdown_lo,1-p_z_breakdown_lo])
        p_breakdown = p_r_udotr_breakdown[:,np.newaxis,np.newaxis,:]*p_psi_breakdown[:,np.newaxis,np.newaxis]*p_z_breakdown[:,np.newaxis]
        expected_breakdown = p_breakdown*contamination_breakdown*mu_breakdown*fitted_fraction['breakdown'] + sacrifice['breakdown']*mu_signal

        nll -= fast_poisson_logpmf(data['breakdown'],expected_breakdown).sum()

        # Signal like events
        expected_signal = np.zeros_like(expected_muon)
        expected_signal += mu_signal*sacrifice['signal']
        expected_signal += p_muon*(1-contamination_muon)*mu_muon
        expected_signal += p_neck*(1-contamination_neck)*mu_neck
        expected_signal += p_noise*(1-contamination_noise)*mu_noise
        expected_signal += p_flasher*(1-contamination_flasher)*mu_flasher
        expected_signal += p_breakdown*(1-contamination_breakdown)*mu_breakdown

        nll -= fast_poisson_logpmf(data['signal'],expected_signal).sum()

        if not np.isfinite(nll):
            print("x = ", x)
            print("p_r_z_udotr_neck = ", p_r_z_udotr_neck)
            print("expected_muon = ", expected_muon)
            print("expected_noise = ", expected_noise)
            print("expected_neck = ", expected_neck)
            print("expected_flasher = ", expected_flasher)
            print("expected_breakdown = ", expected_breakdown)
            print("nll is not finite!")
            sys.exit(0)

        return nll
    return nll

def fit(data, sacrifice, steps):
    constraints = [flasher_r_udotr, breakdown_r_udotr,muon_r_psi_z_udotr,neck_r_z_udotr,noise_z_udotr]
    nll = make_nll(data,sacrifice,constraints,fitted_fraction)

    x0 = []
    for bg in ['signal','muon','noise','neck','flasher','breakdown']:
        x0.append(data[bg].sum())

    # contamination
    x0 += [0.99]*5

    if data['muon'].sum() > 0:
        # P(r,psi,z,udotr|muon)
        x0 += [data['muon'][0,0,0,0].sum()/data['muon'].sum()]
        x0 += [data['muon'][0,0,0,1].sum()/data['muon'].sum()]
        x0 += [data['muon'][0,0,1,0].sum()/data['muon'].sum()]
        x0 += [data['muon'][0,0,1,1].sum()/data['muon'].sum()]
        x0 += [data['muon'][0,1,0,0].sum()/data['muon'].sum()]
        x0 += [data['muon'][0,1,0,1].sum()/data['muon'].sum()]
        x0 += [data['muon'][0,1,1,0].sum()/data['muon'].sum()]
        x0 += [data['muon'][0,1,1,1].sum()/data['muon'].sum()]
        x0 += [data['muon'][1,0,0,0].sum()/data['muon'].sum()]
        x0 += [data['muon'][1,0,0,1].sum()/data['muon'].sum()]
        x0 += [data['muon'][1,0,1,0].sum()/data['muon'].sum()]
        x0 += [data['muon'][1,0,1,1].sum()/data['muon'].sum()]
        x0 += [data['muon'][1,1,0,0].sum()/data['muon'].sum()]
        x0 += [data['muon'][1,1,0,1].sum()/data['muon'].sum()]
        x0 += [data['muon'][1,1,1,0].sum()/data['muon'].sum()]
    else:
        x0 += [0.1]*15

    if data['noise'].sum() > 0:
        # P(r|noise)
        x0 += [data['noise'][0].sum()/data['noise'].sum()]
        # P(psi|noise)
        x0 += [data['noise'][:,0].sum()/data['noise'].sum()]
        # P(z,udotr|noise)
        x0 += [data['noise'][:,:,0,0].sum()/data['noise'].sum()]
        x0 += [data['noise'][:,:,0,1].sum()/data['noise'].sum()]
        x0 += [data['noise'][:,:,1,0].sum()/data['noise'].sum()]
    else:
        x0 += [0.1]*5

    if data['neck'].sum() > 0:
        # P(r,z,udotr|neck)
        x0 += [data['neck'][0,:,0,0].sum()/data['neck'].sum()]
        x0 += [data['neck'][0,:,0,1].sum()/data['neck'].sum()]
        x0 += [data['neck'][0,:,1,0].sum()/data['neck'].sum()]
        x0 += [data['neck'][0,:,1,1].sum()/data['neck'].sum()]
        x0 += [data['neck'][1,:,0,0].sum()/data['neck'].sum()]
        x0 += [data['neck'][1,:,0,1].sum()/data['neck'].sum()]
        x0 += [data['neck'][1,:,1,0].sum()/data['neck'].sum()]
        # P(psi|neck)
        x0 += [data['neck'][:,0].sum()/data['neck'].sum()]
    else:
        x0 += [0.1]*8

    if data['flasher'].sum() > 0:
        # P(r,udotr|flasher)
        x0 += [data['flasher'][0,:,:,0].sum()/data['flasher'].sum()]
        x0 += [data['flasher'][0,:,:,1].sum()/data['flasher'].sum()]
        x0 += [data['flasher'][1,:,:,0].sum()/data['flasher'].sum()]
        # P(psi|flasher)
        x0 += [data['flasher'][:,0].sum()/data['flasher'].sum()]
        # P(z|flasher)
        x0 += [data['flasher'][:,:,0].sum()/data['flasher'].sum()]
    else:
        x0 += [0.1]*5

    if data['breakdown'].sum() > 0:
        # P(r,udotr|breakdown)
        x0 += [data['breakdown'][0,:,:,0].sum()/data['breakdown'].sum()]
        x0 += [data['breakdown'][0,:,:,1].sum()/data['breakdown'].sum()]
        x0 += [data['breakdown'][1,:,:,0].sum()/data['breakdown'].sum()]
        # P(psi|breakdown)
        x0 += [data['breakdown'][:,0].sum()/data['breakdown'].sum()]
        # P(z|breakdown)
        x0 += [data['breakdown'][:,:,0].sum()/data['breakdown'].sum()]
    else:
        x0 += [0.1]*5

    # P(neck|muon)
    x0 += [EPSILON]

    x0 = np.array(x0)

    # Use the COBYLA algorithm here because it is the only derivative free
    # minimization routine which honors inequality constraints
    # Edit: SBPLX seems to work better
    opt = nlopt.opt(nlopt.LN_SBPLX, len(x0))
    opt.set_min_objective(nll)
    # set lower bounds to 1e-10 to prevent nans if we predict something should
    # be 0 but observe an event.
    low = np.ones_like(x0)*EPSILON
    high = np.array([1e9]*6 + [1-EPSILON]*(len(x0)-6))
    x0[x0 < low] = low[x0 < low]
    x0[x0 > high] = high[x0 > high]
    opt.set_lower_bounds(low)
    opt.set_upper_bounds(high)
    opt.set_ftol_abs(1e-10)
    opt.set_initial_step([1]*6 + [0.01]*(len(x0)-6))
    #for constraint in constraints:
        #opt.add_inequality_constraint(constraint,0)

    xopt = opt.optimize(x0)
    nll_xopt = nll(xopt)
    print("nll(xopt) = ", nll(xopt))

    while True:
        xopt = opt.optimize(xopt)
        if not nll(xopt) < nll_xopt - 1e-10:
            break
        nll_xopt = nll(xopt)
        print("nll(xopt) = ", nll(xopt))
        #print("n = ", opt.get_numevals())

    stepsizes = estimate_errors(nll,xopt,low,high,constraints)
    with printoptions(precision=3, suppress=True):
        print("Errors: ", stepsizes)

    #samples = metropolis_hastings(nll,xopt,stepsizes,100000)
    #print("nll(xopt) = %.2g" % nll(xopt))

    pos = np.empty((10, len(x0)),dtype=np.double)
    for i in range(pos.shape[0]):
        pos[i] = xopt + np.random.randn(len(x0))*stepsizes
        pos[i,:6] = np.clip(pos[i,:6],EPSILON,1e9)
        pos[i,6:] = np.clip(pos[i,6:],EPSILON,1-EPSILON)

        for constraint in constraints:
            if constraint(pos[i]) >= 0:
                pos[i] = constraint.renormalize_no_fix(pos[i])

    nwalkers, ndim = pos.shape

    proposal = get_proposal_func(stepsizes*0.5,low,high)
    sampler = emcee.EnsembleSampler(nwalkers, ndim, lambda x, grad, fill_value: -nll(x,grad,fill_value), moves=emcee.moves.MHMove(proposal),args=[None,np.inf])
    with np.errstate(invalid='ignore'):
        sampler.run_mcmc(pos, steps)

    print("Mean acceptance fraction: {0:.3f}".format(np.mean(sampler.acceptance_fraction)))

    try:
        print("autocorrelation time: ", sampler.get_autocorr_time(quiet=True))
    except Exception as e:
        print(e)

    samples = sampler.chain.reshape((-1,len(x0)))

    return samples

if __name__ == '__main__':
    import argparse
    import numpy as np
    import pandas as pd
    import sys
    import h5py
    from sddm import setup_matplotlib

    parser = argparse.ArgumentParser("plot fit results")
    parser.add_argument("filenames", nargs='+', help="input files")
    parser.add_argument("--steps", type=int, default=100000, help="number of steps in the MCMC chain")
    parser.add_argument("--save", action="store_true", default=False, help="save plots")
    parser.add_argument("--mc", nargs='+', required=True, help="atmospheric MC files")
    parser.add_argument("-n", type=int, default=10, help="number of fits to run")
    parser.add_argument("--nhit-thresh", type=int, default=None, help="nhit threshold to apply to events before processing (should only be used for testing to speed things up)")
    args = parser.parse_args()

    setup_matplotlib(args.save)

    import matplotlib.pyplot as plt

    # Loop over runs to prevent using too much memory
    evs = []
    rhdr = pd.concat([read_hdf(filename, "rhdr").assign(filename=filename) for filename in args.filenames],ignore_index=True)
    for run, df in rhdr.groupby('run'):
        evs.append(get_events(df.filename.values, merge_fits=True, nhit_thresh=args.nhit_thresh))
    ev = pd.concat(evs)

    ev = ev[ev.prompt]
    ev = ev[ev.nhit_cal > 100]

    # Note: Technically we want to know the fitted fraction only for events
    # which *would* reconstruct above 20 MeV. However, there is no way to know
    # if the energy is above 20 MeV without fitting it. However, since I only
    # skip fitting events based on the gtid, there shouldn't be any correlation
    # with energy and so the fitted fraction here should be correct.
    fitted_fraction = {}
    for bg in ['signal','muon','noise','neck','flasher','breakdown']:
        if np.count_nonzero(ev[bg]):
            fitted_fraction[bg] = np.count_nonzero(ev[bg] & ~np.isnan(ev.fmin))/np.count_nonzero(ev[bg])
            print("Fitted fraction for %s: %.0f %%" % (bg,fitted_fraction[bg]*100))
        else:
            print_warning("Warning: No %s events in sample!" % bg)
            sys.exit(1)

    ev = ev[~np.isnan(ev.fmin)]
    ev = ev[ev.ke > 20]

    # figure out bins for high level variables
    ev = radius_cut(ev)
    ev = psi_cut(ev)
    ev = cos_theta_cut(ev)
    ev = z_cut(ev)
    ev = udotr_cut(ev)

    # Note: We loop over the MC filenames here instead of just passing the
    # whole list to get_events() because I had to rerun some of the MC events
    # using SNOMAN and so most of the runs actually have two different files
    # and otherwise the GTIDs will clash
    ev_mcs = []
    for filename in args.mc:
        ev_mcs.append(get_events([filename], merge_fits=True, nhit_thresh=args.nhit_thresh, mc=True))
    ev_mc = pd.concat(ev_mcs)

    ev_mc = ev_mc[ev_mc.prompt]
    ev_mc = ev_mc[ev_mc.nhit_cal > 100]
    ev_mc = ev_mc[~np.isnan(ev_mc.fmin)]
    ev_mc = ev_mc[ev_mc.ke > 20]

    # figure out bins for high level variables
    ev_mc = radius_cut(ev_mc)
    ev_mc = psi_cut(ev_mc)
    ev_mc = cos_theta_cut(ev_mc)
    ev_mc = z_cut(ev_mc)
    ev_mc = udotr_cut(ev_mc)

    contamination_pull = {}

    nbg = {}
    for bg in ['signal','muon','noise','neck','flasher','breakdown']:
        nbg[bg] = min(100,len(ev[ev[bg]]))
        contamination_pull[bg] = []

    for i in range(args.n):
        data = {}
        for bg in ['signal','muon','noise','neck','flasher','breakdown']:
            data[bg] = np.zeros((2,2,2,2),dtype=int)
            if bg == 'signal':
                for bg2 in ['signal','muon','noise','neck','flasher','breakdown']:
                    if bg2 == 'signal':
                        for _, row in ev_mc[ev_mc[bg2]].sample(n=nbg[bg2],replace=True).iterrows():
                            data[bg][row.radius_cut][row.psi_cut][row.z_cut][row.udotr_cut] += 1
                    else:
                        for _, row in ev[ev[bg2]].sample(n=nbg[bg2],replace=True).iterrows():
                            data[bg][row.radius_cut][row.psi_cut][row.z_cut][row.udotr_cut] += 1
            else:
                for _, row in ev[ev[bg]].iterrows():
                    data[bg][row.radius_cut][row.psi_cut][row.z_cut][row.udotr_cut] += 1

        # FIXME: Double check that what I'm calculating here matches with what I
        # expect
        sacrifice = {}
        for bg in ['signal','muon','noise','neck','flasher','breakdown']:
            sacrifice[bg] = np.zeros((2,2,2,2),dtype=float)
            for _, row in ev_mc[ev_mc[bg]].iterrows():
                sacrifice[bg][row.radius_cut][row.psi_cut][row.z_cut][row.udotr_cut] += 1

            sacrifice[bg] /= len(ev_mc)

        samples = fit(data, sacrifice, args.steps)

        (mu_signal, mu_muon, mu_noise, mu_neck, mu_flasher, mu_breakdown,
         contamination_muon, contamination_noise, contamination_neck, contamination_flasher, contamination_breakdown,
         p_r_psi_z_udotr_muon_lolololo, # 11
         p_r_psi_z_udotr_muon_lololohi,
         p_r_psi_z_udotr_muon_lolohilo,
         p_r_psi_z_udotr_muon_lolohihi,
         p_r_psi_z_udotr_muon_lohilolo,
         p_r_psi_z_udotr_muon_lohilohi,
         p_r_psi_z_udotr_muon_lohihilo,
         p_r_psi_z_udotr_muon_lohihihi,
         p_r_psi_z_udotr_muon_hilololo,
         p_r_psi_z_udotr_muon_hilolohi,
         p_r_psi_z_udotr_muon_hilohilo,
         p_r_psi_z_udotr_muon_hilohihi,
         p_r_psi_z_udotr_muon_hihilolo,
         p_r_psi_z_udotr_muon_hihilohi,
         p_r_psi_z_udotr_muon_hihihilo,
         p_r_noise_lo, p_psi_noise_lo, # 26, 27
         p_z_udotr_noise_lolo, # 28
         p_z_udotr_noise_lohi,
         p_z_udotr_noise_hilo,
         p_r_z_udotr_neck_lololo, # 31
         p_r_z_udotr_neck_lolohi,
         p_r_z_udotr_neck_lohilo,
         p_r_z_udotr_neck_lohihi,
         p_r_z_udotr_neck_hilolo,
         p_r_z_udotr_neck_hilohi,
         p_r_z_udotr_neck_hihilo,
         p_psi_neck_lo, # 38
         p_r_udotr_flasher_lolo, p_r_udotr_flasher_lohi, p_r_udotr_flasher_hilo, # 39, ..., 41
         p_psi_flasher_lo, p_z_flasher_lo,
         p_r_udotr_breakdown_lolo, p_r_udotr_breakdown_lohi, p_r_udotr_breakdown_hilo, # 44, ..., 46
         p_psi_breakdown_lo, p_z_breakdown_lo,
         p_neck_given_muon) = samples.T

        for i, bg in enumerate(['signal','muon','noise','neck','flasher','breakdown']):
            if i == 0:
                contamination = samples[:,i]
            else:
                contamination = samples[:,i]*(1-samples[:,5+i])
            mean = np.mean(contamination)
            std = np.std(contamination)
            contamination_pull[bg].append((mean - nbg[bg])/std)

    bins = np.linspace(-10,10,101)
    bincenters = (bins[1:] + bins[:-1])/2

    fig = plt.figure()
    axes = []
    for i, bg in enumerate(['signal','muon','noise','neck','flasher','breakdown']):
        axes.append(plt.subplot(3,2,i+1))
        plt.hist(contamination_pull[bg],bins=bins,histtype='step',normed=True)
        plt.plot(bincenters,norm.pdf(bincenters))
        plt.title(bg.capitalize())
    for ax in axes:
        ax.set_xlim((-10,10))
        despine(ax=ax,left=True,trim=True)
        ax.get_yaxis().set_visible(False)
    plt.tight_layout()

    if args.save:
        fig.savefig("contamination_pull_plot.pdf")
        fig.savefig("contamination_pull_plot.eps")
    else:
        plt.show()