1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
|
import numpy as np
from pycuda import gpuarray as ga
import time
from uncertainties import ufloat
import sys
from chroma.gpu import GPU, to_float3
from chroma.camera import get_rays
from chroma.event import Photons
from chroma.sample import uniform_sphere
def progress(seq):
"Print progress while iterating over `seq`."
n = len(seq)
print '[' + ' '*21 + ']\r[',
sys.stdout.flush()
for i, item in enumerate(seq):
if i % (n//10) == 0:
print '.',
sys.stdout.flush()
yield item
print ']'
sys.stdout.flush()
def ray_trace(gpu, number=1000):
"""
Return the number of mean and standard deviation of the number of ray
intersections per second as a ufloat for the geometry loaded onto `gpu`.
.. note::
The rays are thrown from a camera sitting *outside* of the geometry.
Args:
- gpu, chroma.gpu.GPU
The GPU object with a geometry already loaded.
- number, int
The number of kernel calls to average.
"""
lb, ub = gpu.geometry.mesh.get_bounds()
scale = np.linalg.norm(ub-lb)
point = [0,scale,(lb[2]+ub[2])/2]
size = (800,600)
width, height = size
origins, directions = get_rays(point, size, 0.035, focal_length=0.018)
origins_gpu = ga.to_gpu(to_float3(origins))
directions_gpu = ga.to_gpu(to_float3(directions))
pixels_gpu = ga.zeros(width*height, dtype=np.int32)
run_times = []
for i in progress(range(number)):
t0 = time.time()
gpu.kernels.ray_trace(np.int32(pixels_gpu.size), origins_gpu, directions_gpu, pixels_gpu, block=(gpu.nthreads_per_block,1,1), grid=(pixels_gpu.size//gpu.nthreads_per_block+1,1))
gpu.context.synchronize()
elapsed = time.time() - t0
run_times.append(elapsed)
return pixels_gpu.size/ufloat((np.mean(run_times),np.std(run_times)))
def propagate(gpu, number=10, nphotons=500000):
"""
Return the mean and standard deviation of the number of photons propagated
per second as a ufloat for the geometry loaded onto `gpu`.
Args:
- gpu, chroma.gpu.GPU
The GPU object with a geometry already loaded.
- number, int
The number of kernel calls to average.
- nphotons, int
The number of photons to propagate per kernel call.
"""
gpu.setup_propagate()
run_times = []
for i in progress(range(number)):
photons = Photons(np.zeros((nphotons,3)), uniform_sphere(nphotons), np.random.uniform(400,800,size=nphotons))
gpu.load_photons(photons)
t0 = time.time()
gpu.propagate()
gpu.context.synchronize()
elapsed = time.time() - t0
run_times.append(elapsed)
return nphotons/ufloat((np.mean(run_times),np.std(run_times)))
if __name__ == '__main__':
from chroma.detectors import build_lbne_200kton, build_minilbne
lbne = build_lbne_200kton()
lbne.build(bits=11)
gpu = GPU()
gpu.load_geometry(lbne, print_usage=False)
print '%s track steps/s' % ray_trace(gpu)
print '%s photons/s' % propagate(gpu)
|