summaryrefslogtreecommitdiff
path: root/benchmark.py
blob: 329986cf88127ab7ab4fd7a12f5552ec5af4216c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#!/usr/bin/env python
import numpy as np
import pycuda.driver as cuda
from pycuda import gpuarray as ga
import time
from uncertainties import ufloat
import sys
import itertools

from chroma import gpu
from chroma import camera
from chroma import event
from chroma import sample
from chroma import generator
from chroma import tools
from chroma import optics
from chroma.transform import normalize
# Generator processes need to fork BEFORE the GPU context is setup
g4generator = generator.photon.G4ParallelGenerator(4, optics.water_wcsim)

def intersect(gpu_geometry, number=100, nphotons=500000, nthreads_per_block=64,
              max_blocks=1024):
    "Returns the average number of ray intersections per second."
    distances_gpu = ga.empty(nphotons, dtype=np.float32)

    module = gpu.get_cu_module('mesh.h', options=('--use_fast_math',))
    gpu_funcs = gpu.GPUFuncs(module)

    run_times = []
    for i in tools.progress(range(number)):
        pos = ga.zeros(nphotons, dtype=ga.vec.float3)
        dir = ga.to_gpu(gpu.to_float3(sample.uniform_sphere(nphotons)))

        t0 = time.time()
        gpu_funcs.distance_to_mesh(np.int32(pos.size), pos, dir, gpu_geometry.gpudata, distances_gpu, block=(nthreads_per_block,1,1), grid=(pos.size//nthreads_per_block+1,1))
        cuda.Context.get_current().synchronize()
        elapsed = time.time() - t0

        if i > 0:
            # first kernel call incurs some driver overhead
            run_times.append(elapsed)

    return nphotons/ufloat((np.mean(run_times),np.std(run_times)))

def load_photons(number=100, nphotons=500000):
    """Returns the average number of photons moved to the GPU device memory
    per second."""
    pos = np.zeros((nphotons,3))
    dir = sample.uniform_sphere(nphotons)
    pol = normalize(np.cross(sample.uniform_sphere(nphotons), dir))
    wavelengths = np.random.uniform(400,800,size=nphotons)
    photons = event.Photons(pos, dir, pol, wavelengths)

    run_times = []
    for i in tools.progress(range(number)):
        t0 = time.time()
        gpu_photons = gpu.GPUPhotons(photons)
        cuda.Context.get_current().synchronize()
        elapsed = time.time() - t0

        if i > 0:
            # first kernel call incurs some driver overhead
            run_times.append(elapsed)

    return nphotons/ufloat((np.mean(run_times),np.std(run_times)))

def propagate(gpu_geometry, number=10, nphotons=500000, nthreads_per_block=64,
              max_blocks=1024):
    "Returns the average number of photons propagated on the GPU per second."
    rng_states = gpu.get_rng_states(nthreads_per_block*max_blocks)

    run_times = []
    for i in tools.progress(range(number)):
        pos = np.zeros((nphotons,3))
        dir = sample.uniform_sphere(nphotons)
        pol = normalize(np.cross(sample.uniform_sphere(nphotons), dir))
        wavelengths = np.random.uniform(400,800,size=nphotons)
        photons = event.Photons(pos, dir, pol, wavelengths)
        gpu_photons = gpu.GPUPhotons(photons)

        t0 = time.time()
        gpu_photons.propagate(gpu_geometry, rng_states, nthreads_per_block,
                              max_blocks)
        cuda.Context.get_current().synchronize()
        elapsed = time.time() - t0

        if i > 0:
            # first kernel call incurs some driver overhead
            run_times.append(elapsed)

    return nphotons/ufloat((np.mean(run_times),np.std(run_times)))

@tools.profile_if_possible
def pdf(gpu_geometry, max_pmt_id, npdfs=10, nevents=100, nreps=1,
        nthreads_per_block=64, max_blocks=1024):
    """
    Returns the average number of 100 MeV events per second that can be
    histogrammed per second.

    Args:
        - gpu_instance, chroma.gpu.GPU
            The GPU instance passed to the GPUGeometry constructor.
        - max_pmt_id, int
            The channel number of the highest PMT
        - npdfs, int
            The number of pdf generations to average.
        - nevents, int
            The number of 100 MeV events to generate for each PDF.
        - nreps, int
            The number of times to propagate each event and add to PDF
    """
    rng_states = gpu.get_rng_states(nthreads_per_block*max_blocks)

    gpu_daq = gpu.GPUDaq(gpu_geometry, max_pmt_id)
    gpu_pdf = gpu.GPUPDF()
    gpu_pdf.setup_pdf(max_pmt_id, 100, (-0.5, 999.5), 10, (-0.5, 9.5))

    run_times = []
    for i in tools.progress(range(npdfs)):
        t0 = time.time()
        gpu_pdf.clear_pdf()

        vertex_gen = generator.vertex.constant_particle_gun('e-', (0,0,0),
                                                            (1,0,0), 100)
        vertex_iter = itertools.islice(vertex_gen, nevents)

        for ev in g4generator.generate_events(vertex_iter):
            for j in xrange(nreps):
                gpu_photons = gpu.GPUPhotons(ev.photons_beg)
                gpu_photons.propagate(gpu_geometry, rng_states,
                                      nthreads_per_block, max_blocks)
                gpu_channels = gpu_daq.acquire(gpu_photons, rng_states,
                                               nthreads_per_block, max_blocks)
                gpu_pdf.add_hits_to_pdf(gpu_channels, nthreads_per_block)

        hitcount, pdf = gpu_pdf.get_pdfs()

        elapsed = time.time() - t0

        if i > 0:
            # first kernel call incurs some driver overhead
            run_times.append(elapsed)

    return nevents*nreps/ufloat((np.mean(run_times),np.std(run_times)))

if __name__ == '__main__':
    from chroma import detectors
    import gc

    lbne = detectors.build_lbne_200kton()
    lbne.build(bits=11)

    gpu_instance = gpu.GPU()
    gpu_geometry = gpu.GPUGeometry(lbne)
    
    gpu_instance.print_mem_info()
    print '%s ray intersections/sec.' % \
        tools.ufloat_to_str(intersect(gpu_geometry))
    gc.collect()
    gpu_instance.print_mem_info()
    print '%s photons loaded/sec.' % tools.ufloat_to_str(load_photons())
    gc.collect()
    gpu_instance.print_mem_info()
    print '%s photons propagated/sec.' % \
        tools.ufloat_to_str(propagate(gpu_geometry))
    gc.collect()
    gpu_instance.print_mem_info()
    print '%s 100 MeV events histogrammed/s' % \
        tools.ufloat_to_str(pdf(gpu_geometry, max(lbne.pmtids)))