summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rwxr-xr-xbenchmark.py7
-rw-r--r--transform.py18
2 files changed, 21 insertions, 4 deletions
diff --git a/benchmark.py b/benchmark.py
index 31c145c..329986c 100755
--- a/benchmark.py
+++ b/benchmark.py
@@ -14,6 +14,7 @@ from chroma import sample
from chroma import generator
from chroma import tools
from chroma import optics
+from chroma.transform import normalize
# Generator processes need to fork BEFORE the GPU context is setup
g4generator = generator.photon.G4ParallelGenerator(4, optics.water_wcsim)
@@ -46,8 +47,7 @@ def load_photons(number=100, nphotons=500000):
per second."""
pos = np.zeros((nphotons,3))
dir = sample.uniform_sphere(nphotons)
- pol = np.cross(sample.uniform_sphere(nphotons), dir)
- pol /= np.apply_along_axis(np.linalg.norm,1,pol)[:,np.newaxis]
+ pol = normalize(np.cross(sample.uniform_sphere(nphotons), dir))
wavelengths = np.random.uniform(400,800,size=nphotons)
photons = event.Photons(pos, dir, pol, wavelengths)
@@ -73,8 +73,7 @@ def propagate(gpu_geometry, number=10, nphotons=500000, nthreads_per_block=64,
for i in tools.progress(range(number)):
pos = np.zeros((nphotons,3))
dir = sample.uniform_sphere(nphotons)
- pol = np.cross(sample.uniform_sphere(nphotons), dir)
- pol /= np.apply_along_axis(np.linalg.norm,1,pol)[:,np.newaxis]
+ pol = normalize(np.cross(sample.uniform_sphere(nphotons), dir))
wavelengths = np.random.uniform(400,800,size=nphotons)
photons = event.Photons(pos, dir, pol, wavelengths)
gpu_photons = gpu.GPUPhotons(photons)
diff --git a/transform.py b/transform.py
index 4793c0f..299da46 100644
--- a/transform.py
+++ b/transform.py
@@ -18,3 +18,21 @@ def rotate(x, phi, n):
around the axis `n` (when looking towards +infinity).
"""
return np.inner(np.asarray(x),make_rotation_matrix(phi, n))
+
+def normalize(x):
+ "Returns unit vectors in the direction of `x`."
+ x = np.asarray(x)
+
+ if x.shape[-1] != 3:
+ raise ValueError('dimension of last axis must be 3.')
+
+ d = len(x.shape)
+
+ if d == 1:
+ norm = np.sqrt(x.dot(x))
+ elif d == 2:
+ norm = np.sqrt(np.sum(x*x, axis=1))[:,np.newaxis]
+ else:
+ raise ValueError('len(`x`.shape) must be zero or one.')
+
+ return x/norm