diff options
author | Anthony LaTorre <tlatorre9@gmail.com> | 2011-09-10 15:39:31 -0400 |
---|---|---|
committer | Anthony LaTorre <tlatorre9@gmail.com> | 2011-09-10 15:39:31 -0400 |
commit | 9ab99907d1969822285741256384ad853ca859b8 (patch) | |
tree | a8c5bf2129387c9ba4515e57bc623dad032c67ea /gpu.py | |
parent | 2b557d1cb46fcd12271bedcc97969b51a46b65ee (diff) | |
parent | c7144c23df44907327f5b112e62904ed244f9b27 (diff) | |
download | chroma-9ab99907d1969822285741256384ad853ca859b8.tar.gz chroma-9ab99907d1969822285741256384ad853ca859b8.tar.bz2 chroma-9ab99907d1969822285741256384ad853ca859b8.zip |
merge
Diffstat (limited to 'gpu.py')
-rw-r--r-- | gpu.py | 121 |
1 files changed, 110 insertions, 11 deletions
@@ -4,6 +4,7 @@ from copy import copy from itertools import izip import os import sys +import gc import pytools import pycuda.tools @@ -13,7 +14,7 @@ import pycuda.driver as cuda from pycuda import gpuarray as ga import chroma.src -from chroma.tools import timeit +from chroma.tools import timeit, profile_if_possible from chroma.geometry import standard_wavelengths from chroma import event @@ -133,18 +134,61 @@ def chunk_iterator(nelements, nthreads_per_block=64, max_blocks=1024): first += elements_this_round class GPUPhotons(object): - def __init__(self, photons): - self.pos = ga.to_gpu(to_float3(photons.pos)) - self.dir = ga.to_gpu(to_float3(photons.dir)) - self.pol = ga.to_gpu(to_float3(photons.pol)) - self.wavelengths = ga.to_gpu(photons.wavelengths.astype(np.float32)) - self.t = ga.to_gpu(photons.t.astype(np.float32)) - self.last_hit_triangles = ga.to_gpu(photons.last_hit_triangles.astype(np.int32)) - self.flags = ga.to_gpu(photons.flags.astype(np.uint32)) + def __init__(self, photons, ncopies=1): + """Load ``photons`` onto the GPU, replicating as requested. + + Args: + - photons: chroma.Event.Photons + Photon state information to load onto GPU + - ncopies: int, *optional* + Number of times to replicate the photons + on the GPU. This is used if you want + to propagate the same event many times, + for example in a likelihood calculation. + + The amount of GPU storage will be proportionally + larger if ncopies > 1, so be careful. + """ + nphotons = len(photons) + self.pos = ga.empty(shape=nphotons*ncopies, dtype=ga.vec.float3) + self.dir = ga.empty(shape=nphotons*ncopies, dtype=ga.vec.float3) + self.pol = ga.empty(shape=nphotons*ncopies, dtype=ga.vec.float3) + self.wavelengths = ga.empty(shape=nphotons*ncopies, dtype=np.float32) + self.t = ga.empty(shape=nphotons*ncopies, dtype=np.float32) + self.last_hit_triangles = ga.empty(shape=nphotons*ncopies, dtype=np.int32) + self.flags = ga.empty(shape=nphotons*ncopies, dtype=np.uint32) + + # Assign the provided photons to the beginning (possibly + # the entire array if ncopies is 1 + self.pos[:nphotons].set(to_float3(photons.pos)) + self.dir[:nphotons].set(to_float3(photons.dir)) + self.pol[:nphotons].set(to_float3(photons.pol)) + self.wavelengths[:nphotons].set(photons.wavelengths.astype(np.float32)) + self.t[:nphotons].set(photons.t.astype(np.float32)) + self.last_hit_triangles[:nphotons].set(photons.last_hit_triangles.astype(np.int32)) + self.flags[:nphotons].set(photons.flags.astype(np.uint32)) module = get_cu_module('propagate.cu', options=cuda_options) self.gpu_funcs = GPUFuncs(module) + # Replicate the photons to the rest of the slots if needed + if ncopies > 1: + max_blocks = 1024 + nthreads_per_block = 64 + for first_photon, photons_this_round, blocks in \ + chunk_iterator(nphotons, nthreads_per_block, max_blocks): + self.gpu_funcs.photon_duplicate(np.int32(first_photon), np.int32(photons_this_round), + self.pos, self.dir, self.wavelengths, self.pol, self.t, + self.flags, self.last_hit_triangles, + np.int32(ncopies-1), + np.int32(nphotons), + block=(nthreads_per_block,1,1), grid=(blocks, 1)) + + + # Save the duplication information for the iterate_copies() method + self.true_nphotons = nphotons + self.ncopies = ncopies + def get(self): pos = self.pos.get().view(np.float32).reshape((len(self.pos),3)) dir = self.dir.get().view(np.float32).reshape((len(self.dir),3)) @@ -155,6 +199,20 @@ class GPUPhotons(object): flags = self.flags.get() return event.Photons(pos, dir, pol, wavelengths, t, last_hit_triangles, flags) + def iterate_copies(self): + '''Returns an iterator that yields GPUPhotonsSlice objects + corresponding to the event copies stored in ``self``.''' + for i in xrange(self.ncopies): + window = slice(self.true_nphotons*i, self.true_nphotons*(i+1)) + yield GPUPhotonsSlice(pos=self.pos[window], + dir=self.dir[window], + pol=self.pol[window], + wavelengths=self.wavelengths[window], + t=self.t[window], + last_hit_triangles=self.last_hit_triangles[window], + flags=self.flags[window]) + + @profile_if_possible def propagate(self, gpu_geometry, rng_states, nthreads_per_block=64, max_blocks=1024, max_steps=10): """Propagate photons on GPU to termination or max_steps, whichever @@ -169,8 +227,11 @@ class GPUPhotons(object): """ nphotons = self.pos.size step = 0 - input_queue = np.zeros(shape=nphotons+1, dtype=np.uint32) - input_queue[1:] = np.arange(nphotons, dtype=np.uint32) + input_queue = np.empty(shape=nphotons+1, dtype=np.uint32) + input_queue[0] = 0 + # Order photons initially in the queue to put the clones next to each other + for copy in xrange(self.ncopies): + input_queue[1+copy::self.ncopies] = np.arange(self.true_nphotons, dtype=np.uint32) + copy * self.true_nphotons input_queue_gpu = ga.to_gpu(input_queue) output_queue = np.zeros(shape=nphotons+1, dtype=np.uint32) output_queue[0] = 1 @@ -199,6 +260,44 @@ class GPUPhotons(object): if ga.max(self.flags).get() & (1 << 31): print >>sys.stderr, "WARNING: ABORTED PHOTONS" + def __del__(self): + del self.pos + del self.dir + del self.pol + del self.wavelengths + del self.t + del self.flags + del self.last_hit_triangles + # Free up GPU memory quickly if now available + gc.collect() + +class GPUPhotonsSlice(GPUPhotons): + '''A `slice`-like view of a subrange of another GPU photons array. + Works exactly like an instance of GPUPhotons, but the GPU storage + is taken from another GPUPhotons instance. + + Returned by the GPUPhotons.iterate_copies() iterator.''' + def __init__(self, pos, dir, pol, wavelengths, t, last_hit_triangles, + flags): + '''Create new object using slices of GPUArrays from an instance + of GPUPhotons. NOTE THESE ARE NOT CPU ARRAYS!''' + self.pos = pos + self.dir = dir + self.pol = pol + self.wavelengths = wavelengths + self.t = t + self.last_hit_triangles = last_hit_triangles + self.flags = flags + + module = get_cu_module('propagate.cu', options=cuda_options) + self.gpu_funcs = GPUFuncs(module) + + self.true_nphotons = len(pos) + self.ncopies = 1 + + def __del__(self): + pass # Do nothing, because we don't own any of our GPU memory + class GPUChannels(object): def __init__(self, t, q, flags): self.t = t |