
Fast Optical Monte Carlo Simulation With
Surface-Based Geometries Using Chroma

Stanley Seibert Anthony LaTorre

July 9, 2011

Abstract

We propose an alternative approach to Monte Carlo simulation of optical photons
based on a detector geometry defined by triangulated surfaces rather than construc-
tive solid geometry. This technique allows for highly optimized track propagation
techniques using bounding volume hierarchies, and is also amenable to parallelization
with a graphics processing unit (GPU). We describe a working implementation of this
idea, called Chroma. Chroma provides a very fast realtime ray-tracer as well as a full
optical Monte Carlo of a detector that can be nearly 50 times faster than GEANT4,
propagating more than 1 million photons per second. We show some example uses of
Chroma, including visualization of PMT properties in 3D and realtime Monte Carlo
PDF generation for maximum likelihood based reconstruction.

1

1 Introduction

The exponential growth of computing power per dollar has had a profound effect on
analysis techniques in particle physics. With fast workstations and large clusters at our
disposal, Monte Carlo simulation has become an extraordinarily useful tool at all stages
of experiment design and data analysis. Standardized libraries like GEANT4 provide a
common framework for creating particle-based simulations that has been been adopted
by many recent high energy and nuclear physics experiments. With more than a decade
of development, and a broad user base, GEANT4 has many features and many aspects
of it have been well-verified using real detector data.

Standardization can breed some measure of complacency, however. Early design
choices achieve a kind of rigor mortis over time, hardening into unconscious assump-
tions that we forget we made in the first place. Perhaps one of the more fundamental
choices in GEANT4 is in the description of a detector geometry:

A detector is a tree of nested solids, each composed of some material and
mathematically implemented by a particular C++ class.

As will be described in the next section, this is a powerful paradigm, but one we
believe has serious performance consequences. In this paper, we explore an alternative
description:

A detector is a list of oriented triangles, each representing the boundary
between an “inside” and “outside” material.

The distinction between (and implications of) a solid-based versus a surface-based
geometry system is discussed in more detail in the next section.

We want to be clear: we come not to bury GEANT4, but to complement it. Surface-
based modeling has its own tradeoffs, but can be very effective for some problems. In
particular, we will show that for the narrow problem of fast propagation of optical
photons in a large detector, the surface-based approach can be much faster and eas-
ily parallelized on increasingly common graphics processing units (GPUs). We will
describe our software implementation of this idea, called Chroma.

2 3D Representations

Since the invention of computer graphics in the 1960s, computer scientists have studied
the representation of 3D objects in software. Modern software for manipulating 3D
models generally follows one of two paradigms. The first paradigm is that of para-
metric solid modeling, and the second is that of surface-based modeling. The former is
traditionally employed by engineering CAD software and was thus a natural choice for
GEANT4 as well. The latter is more commonly used for artistic applications, such as
3D animation and games.

2.1 Solid-based Modeling

GEANT4 fundamentally uses a solid-based approach to geometry specification, along
with a tree structure that is used both in a descriptive role and to accelerate track

2

propagation. These two roles are fully separated in the surface-based modeling used
by Chroma, so it is important to first dissect the GEANT4 approach.

2.1.1 Detector Definition

In solid-based modeling, a scene is composed of primitive solid volumes described by
some number of parameters. For example, a sphere is a primitive solid described by
a single radius parameter. The primitive solid can be displaced and rotated, and also
combined with other primitive solids using boolean operations like union, intersection,
and difference. More sophisticated solid primitives can be defined, such as solids of
revolution, extruded 2D shapes, even arbitrary polyhedra. All solids have a closed
boundary, and thus a finite volume.

A sphere is defined by more than just a single number, however. The radius must
be combined with functions that can compute useful properties about the solid given
that piece of information. For example, all solid types in GEANT4 must implement
functions that can answer questions like:

• Is a point ~x contained within the solid?

• Starting at point ~x, does a ray in the direction û intersect the surface of the solid?

• What is the normal vector on the surface of the solid at point ~x?

• What is the smallest axis-aligned box that encloses the solid?

These functions (and others) must cover all of the relevant calculations one might
want to do with a solid, either directly or through composition with some external
calculation.

GEANT4 specializes the solid-based modeling paradigm by requiring the solids in
the scene to be structured in a tree. At the top of the tree is the world volume, which
can contain zero or more non-overlapping daughter volumes. These daughter volumes
in turn can contain their own daughters, and so on. Each daughter volume implicitly
subtracts its space from its mother volume, thus the entire tree could be viewed as
partitioning the space into non-intersecting regions. Each region is comprised of some
material, like water or glass, with well-defined properties.

The tree is a convenient way to specify a geometry where objects naturally contain
daughters that displace the parent material, in the way that water or air can be dis-
placed by the photomultiplier tubes in a detector1. Perforated solids, such as a tank
with holes for piping, can be more awkward to work with, as the interior of the solid is
no longer fully contained by the outside. Such situations usually require a partial flat-
tening of the geometry tree, with objects inside the perforated container being elevated
to the level of siblings with the container itself.

2.1.2 Track Propagation

In GEANT4, the geometry tree performs a second duty. Track propagation uses the
tree structure to limit the number of function calls required to compute the next
boundary intersection. At any given step, the track starts inside a volume somewhere

1Or, less intuitively, the way that a vacuum can be said to “displace” glass inside a PMT.

3

in the geometry tree. A ray in the direction of particle travel must be checked for
intersection with the containing volume, plus all of the immediate daughter volumes.
As a result, the number of sibling volumes at a given node is a strong indicator of the
tracking performance. This motivates the GEANT4 user to create deep and narrow
geometry trees, which can sometimes be at odds with the structural requirements of
volumes fully enclosing their children. For example, the previously mentioned difficulty
with perforated containers usually results in a “slow” geometry where volumes inside
the container have to be promoted up to a level where they are siblings to the container
itself. The resulting geometry tree has a wide layer with many siblings, and therefore
more solids to test for intersection when tracks are propagating both inside and outside
the container wall.

Recognizing that the geometry tree may not be the most optimal data structure for
efficient track propagation, GEANT4 further augments the geometry tree by dividing
nodes into voxels, which are simply boxes with each face perpendicular to one of the
Cartesian axes. Voxels are then tagged with the volumes that intersect them, and a
propagating track first checks for voxel intersection, then checks for intersection with
the real volumes associated with that voxel. Since box intersection is fast to compute,
the voxel optimization substitutes a series of slow intersection calls (with arbitrary
solid primitives) for a series of fast intersection calls and then a much smaller list of
slow calls. Voxels, however, cannot accelerate the performance of an individual solid,
due to the solid representation being hidden from the voxel generator2.

While effective, the voxel technique in GEANT4 is somewhat limited. Voxels aug-
ment the geometry tree specified by the user; they do not replace it. A voxel cannot
span levels in the geometry tree, so there is still quite a bit of onus on the GEANT4
user to structure their geometry in a way that allows for fast particle tracking. The
creation of voxels in a volume is done by slicing just along one axis, then within each
slice by optionally slicing along another axis, and then finally along the third axis if
necessary. This iterative approach saves memory, but can be very slow to execute with
volumes containing large numbers of daughters.

2.2 Surface-based Modeling

For the purposes of photon tracking, we propose a complementary view of the detector
geometry through a representation that focuses on 2D boundaries between volumes
rather than the 3D volumes themselves. Fundamentally, these are completely equiva-
lent perspectives from which to describe a 3D scene, although they naturally lead to
different implementations and design choices. In this work, we tend to follow the lead
of the well-established 3D animation and rendering community.

2.2.1 Detector Definition

Unlike solid modeling, where a great variety of solid primitives (or Boolean combina-
tions thereof) are required to describe most detectors, surfaces are typically represented
in a software framework using exactly one simple primitive repeated many times. The

2And everything else, for that matter, thanks to the double-edged sword of encapsulation.

4

most common surface primitive is the triangle, although non-planar primitives are
sometimes used, such as Bézier triangles or NURBS3. The patches are stitched to-
gether to produce a continuous surface. Without loss of generality, we will assume a
surface model composed purely of triangles, often called a triangle mesh.

The use of a single primitive for all surfaces is the first point of departure between
the solid and surface-based approach. GEANT4’s infinitely extensible primitives can
be used to represent almost any computable solid exactly by implementing the required
list of methods for a G4VSolid subclass. However, unless the surface of the solid is
piecewise flat everywhere, a finite triangle mesh cannot represent it exactly. Instead,
the level of approximation is determined by the number of triangles used to represent
the curved surface. Accuracy is traded for memory, and to a lesser extent, speed.
An intrinsically curved primitive, like a Bézier triangle, can better approximate a
wider range of surfaces with fewer patches, at the expense of slightly more complex
data and code required to implement the primitive. Nevertheless, Bézier triangles are
also fundamentally an approximation to surfaces in general, just like standard planar
triangles.

Accepting this kind of approximation in the geometry description may be unsat-
isfying, but is not unique to surface modeling. Models of photomultiplier tubes often
treat the curved front face as a section of a sphere or ellipsoid for speed reasons, when
in fact it is generally a complex curve rotated around a central axis. It is important
to be aware of the accuracy tradeoff in surface-based modeling, as the loss of precision
tends to be larger than the solid modeling case. When the precision is not acceptable,
the solution is to use a finer mesh.

When describing a detector with triangle meshes, there is no tree-like nested volume
hierarchy. Each mesh exists in the global coordinate system, and in fact, the detector
could be thought of as being composed of exactly one giant list of triangles. To represent
the material composition of the detector, both bulk and surface properties, the triangles
need to be augmented with some additional properties. First, we need the triangles
to be oriented. This is typically done by establishing an order for the triangle vertices
following a “right-hand rule” to determine the direction of the surface normal, as shown
in Figure 1. The normal defines the side of the triangle considered “outside.” Once
the triangle has an inside and an outside, we can define an inside material, an outside
material, and a surface material. The inside and outside materials identify the bulk
properties of the two media the boundary separates. These are the same properties
the equivalent solids would have, such as index of refraction and absorption lengths.
The surface material describes the optical properties of the surface, such as diffuse and
specular reflectivity.

One advantage to representing the surface as small triangular patches is the ability
to easily specify different surface properties for different regions of the same object.
The surface material is a property of the triangle, and triangles with different surface
properties can be connected in the same closed mesh. In contrast, applying a reflector
to one end of a transparent light guide in GEANT4 usually requires construction of a
dummy volume touching the light guide to define a surface patch.

3Non-uniform rational basis spline.

5

1 2

3

Figure 1: Right-hand rule for determining the direction of the outward normal from the
order of the vertices in an oriented triangle.

2.2.2 Track Propagation

Much like the tree-based GEANT4 representation of a detector has a consistency condi-
tion to ensure every point in space has a well-defined material, so does a surface-based
representation. In GEANT4, volumes are required to be wholly contained within their
mother volume, and not overlap with their siblings. In a surface-based model, any path
between exactly two triangles must connect sides with the same bulk material. Figure
2 shows an example of this condition. The easiest way to achieve this consistency
condition is to create a geometry that is a union of non-intersecting closed meshes,
although that is not a requirement. Open meshes have a path from the inside surface
to the outside surface, so if they are present in a geometry, the inside and outside ma-
terial must be the same. Intersecting meshes can be acceptable in practice if particles
cannot enter a region where there are paths that violates the consistency condition4.

Efficient track propagation in a surface-based model requires a tree structure, just
as it does for a solid-based GEANT4 model. A well-designed navigation tree can
reduce the number of intersection tests required from O(n) to O(log n). However,
unlike the solid-based case, the flattened definition of a surface-based detector provides
no inherent tree structure to exploit. This actually proves to be an advantage, as
the software is now free to construct a navigation tree independent of how the user
described the geometry initially. Additionally, the choice of a single surface primitive
allows for very aggressive optimization of the construction of the tree since there is
only one case to implement. We will discuss one possible navigation data structure,
called a Bounding Volume Hierarchy, in Section 5.1, although others are possible.

4Intersecting meshes can be made consistent for all paths by adding appropriate priority values to triangles
and modifying the path consistency condition to take this into account. This is beyond the scope of this
current document, but may be explored in the future.

6

inside: vacuum

outside: glass

inside: glass

outside: water

inside: water

outside: water

inside: water

outside: water

Figure 2: A 2D view of a spherical PMT and light reflector geometry showing the material
consistency conditions. The arrows indicate the direction of the surface normal for each
segment. Note that the reflector segments are not closed, and therefore the inside and
outside material must be identical.

7

2.3 Representational Complementarity

A surface-based description of a detector geometry can be viewed as a dual representa-
tion to the equivalent solid-based description. There is a mapping of concepts between
the two perspectives, as summarized in Table 1.

Concept Solid (GEANT4) Surface (Chroma)
Fundamental
primitive

Many different solid types Triangle

Primitive unit
description

Parameters and a C++
class

Ordered list of triangle ver-
tices

Geometry de-
scription

Tree of nested, non-
overlapping volumes

List of triangles

Bulk material
description

Each volume composed of
one material

Each triangle has inside and
outside material

Surface material
description

A boundary between
mother and daughter, or
between siblings has a
surface material

Each triangle has a surface
material

Tracking data
structure

Geometry tree plus voxels Bounding Volume Hierar-
chy

Table 1: Concept mapping between solid-based models in GEANT4 and surface-based mod-
els in Chroma.

3 Requirements of an Optical Simulation

The motivation for Chroma comes from the need to propagate a large number of optical
photons very quickly. Nearly all of the Monte Carlo time required to simulate an event
in a water Cherenkov detector is taken up by photon propagation. Even a low energy
(for LBNE) electron with 10 MeV of kinetic energy produces 5000 photons. Compared
to other particles, optical photons are relatively simple to simulate, requiring only a
handful of well-understood physics processes. This makes photons an ideal candidate
for propagation using a dedicated fast algorithm designed for parallel execution.

Although one might imagine such a fast implementation would be useful for simu-
lating events instead of the GEANT4 optics simulation, we believe that a fast optical
simulation could be even more beneficial to event reconstruction. Reconstruction tasks
often require the estimation of probability distributions for detector observables given
some fundamental parameters, like event position and energy. Typically, one has to
integrate over possible photon histories in order to create such distributions. Although
some cases, like direct propagation from an event vertex to a PMT, can be evaluated
analytically quite easily, secondary processes like scattering and reflection quickly make
the problem very complex. Given a very fast optical Monte Carlo simulation, one could

8

integrate over these photon histories directly just by creating the appropriate initial
photon distributions for the interaction of interest and propagating them through a
simulated detector and data acquisition system. Changes to the optics of the detec-
tor, such as the addition of reflectors or modifications of the cavity geometry, can be
incorporated by simply updating the detector model. However, to imagine using a
simulation live during event reconstruction, it must be very, very fast.

Software speed is always a mixture of efficient algorithms and capable hardware.
By accepting the approximation inherent in a triangulated surface, we have created an
opportunity to use very efficient tracking algorithms. At the same time, the computer
industry is now producing hardware with a unique set of features to complement this
approach. Manufacturers of graphics processing units (GPUs) have moved toward a
more general computing model, compared to the fixed function 3D pipelines used in
previous GPUs. A modern GPU is now a fully programmable, data-parallel floating
point coprocessor optimized for high throughput. General purpose GPU (GPGPU)
computing is still in its early years, so there are multiple, incompatible software inter-
faces. In 2006, NVIDIA released a special compiler and library interface, called CUDA,
designed to allow their new GPU hardware architecture to be used for general purpose
computing. Several hardware and software iterations later, CUDA is still the most
mature and flexible interface for GPU computing, and so Chroma has been designed
to use it5.

Because CUDA requires the GPU-accelerated sections of the program to be rewrit-
ten in a new C++-like language, we have deliberately limited our particle simulation
to optical photons. Only the following processes need to be implemented on the GPU
for bulk materials:

• Propagation in bulk and refraction/reflection at media boundaries (index of re-
fraction)

• Absorption

• Re-emission from wavelength-shifting absorber

• Rayleigh scattering

• Mie scattering

and for surface materials:

• Diffuse reflection

• Specular reflection

• Surface absorption

Most of these processes amount to a lookup in a table indexed by wavelength, a random
number draw, and a simple transformation of the photon trajectory. These processes
need to be applied in parallel to thousands of photons (or more) at once.

5Several vendors, including NVIDIA, are working on a cross-platform library, called OpenCL, that will
allow data parallel calculations to be run on CPUs and GPUs of different vendors. OpenCL is still rather
rough around the edges, but is similar enough to CUDA that we can port Chroma to the platform when it
becomes advantageous in the future.

9

4 Detector Description

Given the discussion in the previous sections, we can propose a formal definition of a
surface-based detector model. A detector consists of:

• A list ~Vi of three-vectors for all vertices in the model, where i indicates the vertex
number.

• A list of integer 3-tuples T j , where j indicates the triangle number. The integer
components of T j indicate the vertex numbers that compose triangle j. The
order of the vertices in T j indicate the direction of the “outward” surface normal
using the right-handed convention. Triangles are encouraged to share vertices
with their neighbors to save on memory, although this is not required.

• A list of bulk materials, each identified by a unique integer (“material code”) and
consisting of the different wavelength-dependent functions used to describe index
of refraction, absorption length, scattering lengths, etc.

• A list Ij of material codes that identify the material “inside” triangle j.

• A list Oj of material codes that identify the material “outside” triangle j.

• A list of surface materials, each identified by a unique integer (“surface code”)
and consisting of the different wavelength-dependent functions used to describe
reflection and absorption probabilities.

• A list Sj of surface codes that identify the surface material on triangle j.

• A list Dj of solid identifiers. These are integers that are assigned to the triangles
to allow the simulation to associate hit triangles with particular solid entities. For
example, one could use these codes to identify the PMT ID number to which a
triangle belongs. Strictly speaking, solid identifiers are not required for a surface-
based optical simulation, but they facilitate the assignment of detected photons
to the appropriate electronics channels.

In practice, the above lists are not specified by the user directly in Chroma. Instead,
the detector is described programmatically as the union of several separate triangle
meshes, either loaded from STL6 or generated on the fly using functions that create
meshes in various shapes based on input parameters. Meshes loaded from disk can also
be rotated and displaced, allowing a single PMT mesh model to be placed many times
in different locations.

5 Implementation

One could implement the optical simulation directly with the data structure described
in the previous section. However, a large PMT-based detector like LBNE typically
requires 50 million triangles, which would be terribly slow to work with. For each
photon step, a ray would need to be tested for intersection with each of the triangles,
resulting in a simulation far too slow to use.

6STL is a standard triangle mesh format that can be produced by nearly all 3D modeling programs.

10

AB

C

D

E

F

G

b

a

c d

e

A

B C

D E F G

a b c d e

Figure 3: An example 2D bounding volume hierarchy. The left side of the figure shows
the spatial relationships between the triangles and bounding volumes, and the right side
shows the intermediate nodes and triangles in a tree. Note that bounding volumes D and E
overlap, as is permitted.

In order to efficiently propagate photons, we need to generate from the detector
description a data structure that can dramatically reduce the number of intersection
tests required to find the closest triangle intersection point. A standard technique is
to create a bounding volume hierarchy from the triangle list.

5.1 Bounding Volume Hierarchies

A bounding volume hierarchy (BVH) is a tree structure consisting of bounding volumes,
usually axis-aligned boxes, that are nested within each other. Any given node in the
hierarchy may have zero or more children, and the bounding volume for each child
must be contained completely within the bounding volume of the parent. Children do
not need to fully partition the volume of the parent, and sibling nodes are permitted
to overlap. Figure 3 shows a bounding volume hierarchy in 2D space along with the
associated tree structure.

The leaf nodes in the BVH contain subsets of the full triangle list. Although
triangles may appear in multiple leaf nodes (since leaf nodes with the same parent may

11

overlap), our bottom-up construction method, described in the next section, ensures
that each triangle is assigned to exactly one leaf node. The containment condition
ensures that in order for a ray to intersect a particular triangle, it must intersect all of
the bounding volumes above it in the BVH, all the way back to the root node.

To test for intersections with a BVH, one starts with the root node and tests for
intersection with the box associated with that node. If an intersection is found, then
intersection must be tested for each of the children. Since siblings may overlap, it is
not possible to take a shortcut and skip the rest of the children after the first hit. For
each child that intersects, the process is repeated recursively until leaf nodes (if any)
are reached. All the triangles associated with each hit leaf node must then be tested,
and the closest intersection point identified. The number of intersection tests depends
on the depth of the tree, and the average number of children per node, d. Assuming
minimal overlap of siblings and optimal partitioning of the triangles, the number of
box intersections required in the case where a triangle is hit is proportional to d logd n,
where n is the number of triangles. For a model with 50 million triangles and a BVH
with 2 children per node7, this corresponds to approximately 51 intersection tests per
ray, a million-fold improvement.

5.2 BVH Construction with a Z-Curve

The challenge in BVH construction is to achieve a very fine partitioning of the triangle
list into leaf nodes, while also completing the tree construction in a reasonable amount
of time. The approach that Chroma takes is to sort the triangles in such a way that
adjacent triangles are near each other in space, and then to recursively group them in
nodes working from the bottom of the tree to the top.

The first step in the BVH construction process used in Chroma is to compute
for every triangle a Morton code. First, the 3D space enclosing the world volume is
quantized into integer x, y, and z coordinates with some number of bits per coordinate.
For most complex models in Chroma, we find that 8 bits is a minimum to achieve
optimal performance. More bits per coordinate increases the size of the final Morton
code, and also increases the amount of time needed to complete the tree. At the
moment, Chroma stores the Morton code in a 32-bit integer, so 10 bit quantization
on each axis is currently the maximum allowed. If needed, the quantization could be
further extended by switching to a 64-bit Morton code.

For each triangle, the coordinates for the centroid of the three vertex points is
computed and quantized to an integer (x, y, z) location. Then the Morton code is
computed by interleaving the bits of x, y, and z to produce a single integer. If the
bit representation of x = x3x2x1x0, y = y3y2y1y0, and z = z3z2z1z0, then the bit
representation of the Morton code is m = z3y3x3z2y2x2z1y1x1z0y0x0. Table 2 shows
Morton code generation process for several triangle examples. In effect, a Morton code
flattens a higher dimensional space into a 1D space while attempting to preserve spatial
locality.

7For this idealized case, the optimal number of children to have per node, on average, is the transcendental
number e.

12

Triangle Centroid Integer Coordinates Morton Code
(1.0, 2.5, 3.4) (0, 1, 1) 6
(8.3, 5.1, 12.0) (4, 2, 6) 368
(10.3, 5.1, 12.0) (5, 2, 6) 369
(8.3, 7.1, 12.0) (5, 3, 6) 370
(8.3, 5.1, 14.1) (5, 2, 7) 372

Table 2: Translation of the centroid of a triangle into a Morton code, assuming 3-bit coding
for x, y and z coordinates ranging from 0 to 16. All numbers shown are base 10. Notice how
the last 4 points have similar Morton codes indicating their spatial proximity.

If one draws a line in the N -dimensional space of cells, connecting them based on
their Morton order, then a space filling curve called a Z-curve is created. Figure 4
shows a picture of the 2–4 bit curves in two dimensions, and Figure 5 shows the same
curve in 3D with color coding to indicate the Morton ordering. These pictures highlight
the fractal nature of the curve, which is useful for BVH construction. Right-shifting
the Morton codes by 1 bit gives another Morton code in a more coarsely quantized
space.

To build the BVH, all triangles with the same Morton code are placed in the same
leaf node. The bounding volume for the leaf node is then computed from the min and
max of all the triangle vertex coordinates (not the centroids). To group leaf nodes, the
Morton codes for each leaf node are right-shifted by one bit, and nodes with identical
codes become siblings under a new parent node. The bounding volume of the parent
node is defined by the min and max box coordinates for the children. This continues
recursively up the tree, until reaching the root node when all Morton code bits have
been shifted away. The result is an incomplete binary tree, with nodes missing if those
cells in the quantized space contained no triangles. Figure 6 shows a 3D view of a
sample model and the boxes corresponding the nodes at different levels in the BVH.

Other techniques for BVH construction are possible, and some future directions for
exploration are mentioned in Section 7.

5.3 GPU Processing

Although the CUDA documentation uses terminology that resembles CPU parallel
processing with threads, the underlying GPU hardware behaves very differently than
a multicore processor. In order to devote more of the chip area to arithmetic units,
the GPU architects have stripped away most of the on-chip cache and simplified the
instruction decoder and associated support circuitry, while increasing the width of the
memory bus. Additionally, all high-end GPUs come with on-board memory (called “de-
vice memory” in the CUDA documentation) that is designed for much higher through-
put than standard system memory. Table 3 lists the specifications of the GPU and
CPU we used for testing.

Once the BVH has been computed for a model, the basic detector representation
discussed in Section 4 is loaded into the device memory, where it remains unchanged

13

Figure 4: A drawing of a Z-curve for a 2D Morton code with 1, 2, 3, and 4 bits per dimension.
The line connects points in the 2D space that will have consecutive Morton codes, indicating
the order they will have in a 1D array. Figure from [1], used in accordance with the GFDL
license.

14

Figure 5: A drawing of a Z-curve for a 3D Morton code with 3 bits per dimension. The line
connects points in the 3D space that will have consecutive Morton codes. The color ramp
also indicates the 1D ordering. Figure from [1], used in accordance with the GFDL license.

CPU GPU

Model # Intel Core i7-920 NVIDIA GeForce GTX 580
Transistors 0.731 billion 3 billion
Clock rate 2.66 GHz 1.544 GHz

Peak FLOPS 85 GFLOPS 1544 GFLOPS
Memory size up to 24 GB 3 GB (special order)
Memory bus 192 bits 384 bits

Peak Memory Bandwidth 25.4 GB/sec 192.4 GB/sec
Peak Power Usage 130W 244W

Price $290 $590

Table 3: Comparison of specifications between the high-end CPU and GPU used for Chroma
testing. The GTX 580 has 512 arithmetic units divided into 16 groups, while the Core i7
has 4 general purpose cores. Note that FLOPS = single precision floating point operations
per second.

15

Figure 6: A rendering of the bounding volume boxes at different levels in the tree, starting
with the root and moving down 3 layers in each image. The final image is the actual rendered
triangle mesh.

16

for the entire duration of the program run. This includes the vertex list, the triangle
list, the material lists, and the solid ID number for each triangle. Additionally, the
BVH is loaded into the GPU device memory as a series of flattened arrays. Each node’s
bounding volume is defined by the coordinates of opposite corners, and the child nodes
are organized such that they have consecutive indices in the node arrays. Instead of
pointers, each node identifies its children using two integers: index of first child in the
node array and the number of children. For leaf nodes, these indices identify regions
of the triangle array that are children of the leaf node. Again, since the triangles are
in Morton order, the children of each leaf are adjacent to each other.

With the data structure in place, Chroma offers two different kinds of calculation
that can be performed with the detector model.

5.3.1 Ray-tracing

The ray-tracing8 GPU function is used to render an image of the detector in a rectan-
gular window. The ray-tracer is an important debugging tool since it uses exactly the
same mesh intersection code called by the full optical simulation. It is also useful for
visualizing the detector from different vantage points.

In ray-tracing mode, a pinhole camera is imagined in the detector model, with the
film divided into pixels. From each pixel, a ray is sent out, through the pinhole, into the
detector geometry. If it hits a triangle, the material codes of the triangle are interpreted
as a color and the color intensity is scaled by the cosine of the angle between the normal
vector and the incident ray. The pixel from which the ray originated is given this color.
The effect is to render the scene as if a light source is present at the camera, and
all surfaces are perfectly Lambertian diffuse reflectors. Figure 7 shows some sample
renderings of various models made with Chroma.

5.3.2 Photon Propagation

The propagation of photons in the detector uses the same basic mesh intersection core.
A list of photons is loaded into the GPU, including their initial start times, positions,
directions, wavelengths, and polarization vectors. For maximum throughput, it is best
to batch process as many photons as is practical, generally several thousand or more.

The propagation code loops a fixed number of times propagating each photon one
step for each pass through the loop. We assign a thread to each photon, allowing them
to each perform this simulation simultaneously. At each step, the photon ray is traced
to the nearest triangle. The bulk material the photon passed through on the way to
the surface can then be obtained from the inside or outside material code (depending
on orientation of the triangle relative to the photon incidence angle) of the triangle.
From the bulk material code, the appropriate indices of refraction, attenuation and
scattering lengths for the current photon wavelength are obtained. Random numbers
are drawn to decide if any of the bulk processes9 stop the photon before reaching the

8Technically, the process described in this section should be called ray-casting, but the term ray-tracing
is often used informally instead.

9Wavelength-shifting and Mie scattering have not been implemented yet.

17

Figure 7: Sample Chroma renderings of a cutaway PMT model showing inner photocath-
ode and reflector surfaces, a PMT model with a Winston cone reflector, the LBNE Water
Cherenkov detector with the black liner sheet removed, and a famous guy.

18

nearest surface. If any of them do stop the photon, the new photon state is computed,
and the thread moves to the next iteration of the loop.

If the photon reaches a triangle, one of two processes occurs depending on whether
the triangle is associated with a surface material. The surface material, if present, acts
as a convenient way to model two special cases of a boundary between two media:
a film (whose microscopic physical parameters are unknown such as a photocathode
material or a thin film in which it would be needless to create a separate closed mesh
such as a mirrored surface) and the diffuse reflection of photons by an opaque solid. If
the triangle does not have an associated surface material, the photon is either reflected
or refracted according to the Fresnel coefficients determined by the refractive indices
of the first and second bulk materials. If a surface material does exist, the photon is
absorbed, specularly reflected, or diffusely reflected according to a probability for each
determined by the surface material properties.

At the end of the iteration, each photon is marked with a state code indicating
which process acted at the end of the step, and also the ID number of the last triangle
that was hit, if a surface was reached. The propagation loop continues up to the number
of iterations specified in the function call. For maximum speed, several iterations in a
row should be performed in one GPU function call, but if step-by-step information is
required, the GPU can be told to only propagate one step before returning back to the
CPU caller.

5.4 DAQ Simulation

For reconstruction purposes, we want to be able to convert the list of final photon
states computed by the propagation function into hit times on the PMT channels. We
can do this operation directly on the GPU to avoid the overhead of copying the photon
information back to the CPU over a relatively slow PCI-Express bus. The very simple
DAQ simulation currently implemented in Chroma applies a random time jitter to the
photon absorption time at the photocathode and uses the mapping from triangle ID to
solid ID number to determine in which channel the photoelectron would be detected.
The earliest time is recorded as the hit for the channel. Although crude, this simple
DAQ is sufficient for testing of position reconstruction using Chroma to generate hit
time PDFs for all the PMTs.

6 Example Usage

Although the basic BVH construction and mesh intersection code in Chroma is com-
plete, the infrastructure around it is still evolving. In this section, we will highlight
some different examples of Chroma usage for both detector visualization and photon
simulation.

6.1 Photon Tracks in a Lens

A very simple test of Chroma is to send parallel photons through a spherical lens to
observe the effects of the index of refraction and attenuation length. Figure 8 shows

19

Figure 8: Photon tracks from parallel rays hitting a 1m diameter sphere of glass, with a
flat wavelength distribution. The approximate location of the surface of the sphere has been
marked with a dashed line. The track colors indicate the photon wavelength.

the photon tracks for a collection of rays passing through such a lens. The focal point
of the lens is not a point due to a combination of the triangular facets on the sphere
and chromatic aberration of the different wavelengths.

6.2 Display of Position-Dependent PMT Properties

One of the early uses of Chroma was to display the results of 2D scans of the 12”
PMT face with a Cherenkov light source. After 4 scans across the diameter of the
tube, rotated 45 degrees each time, we had sampled the relative efficiency, the relative
mean transit time, and the transit time spread over the PMT at 200 locations. Figure
9 shows a rendered image of this data set displayed on a 3D model of the 12” PMT.
The sample points were interpolated in polar coordinates to determine the value of
the response function at the centroid of each triangle. Rotating the model in the live
Chroma viewer gives the user a good intuition for how the local variation in the PMT
response over the face can result in a shift in the average response when the PMT is
viewed from different angles.

20

Figure 9: Chroma rendering with triangles colored with a 2D interpolated data set showing
the mean transit time for single photoelectrons relative to the center. Photoelectrons from
blue regions arrive 3 ns early, and photoelectrons from red regions arrive 3 ns late.

6.3 MiniLBNE Water Cherenkov Detector

For the purposes of developing a function minimizer that can operate on stochastic,
Monte Carlo-derived likelihood functions10, we have created a 1/10 linear scale LBNE
water Cherenkov detector, called “MiniLBNE”, shown in Figure 10. This detector
is much faster to load and work with than the full size LBNE, allowing for easier
experimentation with the minimization algorithm. A rendering of MiniLBNE is shown
in Figure 10.

For reconstruction purposes, we do not want to use the ray-tracer, nor do we need
full photon tracks. Instead, we want to take the photons that hit PMTs and generate a
timing PDF across many events that can be used in the likelihood function evaluation.
To reduce overhead, we do this by leaving the final photon states on the GPU and
running an additional GPU function to identify the detected photons, apply the PMT
timing response11 and then determine the earliest hit time (if any) for each PMT ID
in the event. Figure 11 shows the hit time distribution for a particular PMT when the
event is in the center versus directly in front of the PMT. In addition to the reduction
in the propagation time from the light source, the timing distribution also narrows as
expected from multiple photons hitting the same PMT. The timing distribution for the
entire detector with isotropic light at the center is shown in Figure 12, which shows
the contribution of both direct and scattered light in the simulation.

10This project will also be the subject of an upcoming memo.
11For now, a simple Gaussian prompt peak.

21

Figure 10: Chroma rendering of external view of MiniLBNE with 12” PMTs.

22

Hit time (ns)
0 5 10 15 20 25 30

H
its

 p
er

 b
in

0

20

40

60

80

100

120

140

160

180

200

220

Center

z = +4m

Figure 11: The hit time recorded by PMT channel #224 for an isotropic event at the center
vs. nearly in front of a PMT in the MiniLBNE detector. (For illustrative purposes only! This
simulated data does not use a realistic PMT efficiency curve or wavelength distribution.)

Hit time (ns)
10 15 20 25 30 35 40 45 50 55 60

P
M

T
 h

its
 p

er
 b

in

1

10

210

310

410

Figure 12: The hit times recorded by all PMT channels for an isotropic event at the center
of the MiniLBNE detector. (For illustrative purposes only! This simulated data does not
use a realistic PMT efficiency curve or wavelength distribution.)

23

Count Memory Usage

Vertices 20.2M 241.9 MB
Triangles 40.1M 641.3 MB

BVH nodes 5.2M 165.8 MB

Total 1049.0 MB

Table 4: Memory usage of full size water Cherenkov detector model using a truncated PMT
mesh without light concentrators.

6.4 Full Size LBNE Water Cherenkov Detector

The ultimate goal, of course, is to simulate photon propagation in the full size LBNE
water Cherenkov detector. For a 200 kiloton cavity, as described in the recently pro-
duced case study, with 29000 PMTs12, the detector model requires a very large amount
of GPU memory. Currently, we simplify the PMT model by truncating it a short dis-
tance past the equatorial region. This cuts the memory usage in half, allowing the
detector to fit on a broader range of GPUs. Table 4 lists the memory required for
different parts of the detector model.

With this configuration, the simulation can propagate 10 million track steps per
second with no physics simulation. Including the full physics simulation, more than 1
million photons can be propagated to completion per second. The detector model in
WCSim can propagate roughly 30,000 photons per second with a highly-tuned geometry
on a Core i7 2.6 GHz Processor. Future work to more efficiently pack replicated triangle
meshes will cut the memory usage significantly, allow the full PMT model to be used
again, and possibly improve performance further.

Although we are not yet using the full size water Cherenkov detector for develop-
ment of reconstruction, we can in the near term verify the optical model of Chroma
against the well-tested optical models of WCSim and the SNO+ Monte Carlo. Fig-
ure 14 shows the timing distribution for isotropic light emitted in the full size water
Cherenkov detector model with no light concentrators. This distribution is just for
illustrative purposes and has not been compared to any standard Monte Carlo results.

7 Conclusions

7.1 Summary

In this document, we have outlined a very different approach to fast particle simu-
lation that shifts the focus from solid volumes to the boundaries between volumes.
Surface-based modeling is a completely consistent and equivalent approach to solid-
based modeling that has been well-studied in the computer graphics community for 3D
rendering purposes. We are interested in this surface-based approach for its ability to

12The 29,000 PMT estimate assumes the addition of some kind of light enhancement technology to the
PMT, such as Winston cones or wavelength-shifting plates.

24

Figure 13: A Chroma rendering of the outside of the LBNE water Cherenkov detector. Blue
indicates the opaque cavity liner, and the white dots are the back sides of the truncated
PMTs poking through the sheet.

25

Hit time (ns)
100 150 200 250 300 350 400 450 500 550 600

P
M

T
 h

its
 p

er
 b

in

1

10

210

310

Figure 14: The hit times recorded by all PMT channels for an isotropic event at the center of
the full size water Cherenkov detector with no light concentrators. For illustrative purposes
only! This simulated data does not use a realistic PMT efficiency curve or wavelength
distribution.

26

facilitate the propagation of photons through a detector model nearly 100 times faster
than GEANT4. This speed increase is due to both the algorithmic improvements pos-
sible, and the ease with which the calculation can be offloaded to the massively parallel
hardware present in today’s GPUs.

The surface-based detector model consists entirely of repeated triangular patches,
tiling the surface of every boundary between volumes. The triangles are annotated
with material codes and ID numbers to allow them to be associated back to particular
objects of interest (like specific PMTs). Surface-based detector models sacrifice some
accuracy in the representation for curved surfaces in exchange for the opportunity to
heavily optimize track propagation. The level of approximation can be controlled,
however, by reducing the size of the triangular patches used to map the surface of
the object. Thanks to the bounding volume hierarchy, the resource usage of adding
more triangles may be linear in memory, but is sub-linear in processing time due to
the assistance the tree structure provides in track propagation.

We also have described a technique for fast construction of bounding volume hier-
archies using a Morton ordering of triangles. This technique is relatively fast and quite
effective at speeding up intersection tests. Chroma uses the same BVH and intersection
implementation for both ray-tracing the detector model to display it, and for photon
propagation through the detector.

Chroma can now simulate approximately 1 million photons per second in a full size
LBNE Water Cherenkov detector, including physics processes like absorption, Rayleigh
scattering, Fresnel reflections, and refraction. We are also using Chroma to assist in
the development of a Monte Carlo-based maximum likelihood reconstruction algorithm
using a reduced detector for now, moving up to the full size detector in the future.

7.2 Future Directions

In the medium-term, we need to verify that Chroma can reproduce the optical prop-
erties of currently verified detector simulations, like WCSim and the SNO+ Monte
Carlo. However, in the short term we would like to investigate some refinements to the
detector description in order to reduce the GPU memory required to simulate full-size
LBNE. This will allow Chroma to run on more standard GPUs with less than 1 GB of
device memory.

First, we would like to extend the detector definition to more efficiently represent
replicated triangle meshes. A water Cherenkov detector has the same PMT surface
repeated many times, differing only by a vector displacement followed by a 3D rotation.
If we could capture the repetition more directly in the detector model, the number of
triangles could be reduced by a factor of 30,000. Moreover, this information could also
accelerate BVH construction while also enhancing the granularity. The PMT could
be split into a BVH in local coordinates, and then linked to a larger BVH with the
inclusion of coordinate transformations at some nodes. This is somewhat similar to
how GEANT4 deals with repeated volumes. Some care will be required to include
repeated and non-repeated meshes in a general way.

Second, we may also want to consider surfaces with a non-planar primitive. Curved
surface patches would allow Chroma to represent objects like PMTs with far fewer

27

elements, further saving memory. There are various standard specifications for curved
triangles that are created by attaching a normal vector to each vertex and interpolating
the normal vector between the vertices. The key requirement for our implementation
would be that the additional data storage and computation does not adversely affect
the runtime.

Finally, we need to further explore the issues with using multiple GPUs in parallel
to simulate many events for likelihood calculation purposes. Our primary development
computer contains 5 CUDA devices, and preliminary tests show that Chroma is not
scaling past 2 devices. We are not sure what the bottleneck is yet, but we do believe
this can be fixed.

Chroma is currently written in a mixture of Python13 and CUDA C. This has been
tremendously useful for rapid development, but will probably create difficulties inte-
grating Chroma with more standard C++ tools. Once development has stabilized,
we will investigate creating a C++ wrapper around the GPU code that will allow
ray-tracing calls to be made by other tools as part of hybrid analytic-Monte Carlo re-
construction techniques. One could even imagine experimenting with using Chroma as
a replacement for the G4Transportation process to use GEANT4’s particle simulation
code with the Chroma geometry14.

We are not entirely sure how Chroma will evolve, but we hope that it will add to
the particle physics simulation toolbox in ways we don’t yet foresee.

References

[1] Z-order curve. http://en.wikipedia.org/wiki/Z-order curve. Accessed on July 8,
2011.

13Note that we have made extensive use of Numpy in order to achieve the speeds we describe in this
document. Python doesn’t have to be slow!

14One would still want to capture all the initial photon vertices from GEANT4 and propagate them as a
batch at the end of the event.

28

http://en.wikipedia.org/wiki/Z-order_curve

	Introduction
	3D Representations
	Solid-based Modeling
	Detector Definition
	Track Propagation

	Surface-based Modeling
	Detector Definition
	Track Propagation

	Representational Complementarity

	Requirements of an Optical Simulation
	Detector Description
	Implementation
	Bounding Volume Hierarchies
	BVH Construction with a Z-Curve
	GPU Processing
	Ray-tracing
	Photon Propagation

	DAQ Simulation

	Example Usage
	Photon Tracks in a Lens
	Display of Position-Dependent PMT Properties
	MiniLBNE Water Cherenkov Detector
	Full Size LBNE Water Cherenkov Detector

	Conclusions
	Summary
	Future Directions

