#!/usr/bin/env python # Copyright (c) 2019, Anthony Latorre # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # You should have received a copy of the GNU General Public License along with # this program. If not, see . """ Script to make a plot of the number of high nhit of orphans for each run. To run it just run: $ ./plot-orphans [list of orphan data files] """ from __future__ import print_function, division import numpy as np if __name__ == '__main__': import argparse import numpy as np import pandas as pd from sddm import setup_matplotlib, read_hdf from sddm.plot import despine parser = argparse.ArgumentParser("plot fit results") parser.add_argument("filenames", nargs='+', help="input files") parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds") parser.add_argument("--nhit-thresh", type=int, default=100, help="nhit threshold for orphans") parser.add_argument("-o", "--output", default=None, help="output filename") args = parser.parse_args() setup_matplotlib(args.save) import matplotlib.pyplot as plt orphans_per_run = {} # Loop over runs to prevent using too much memory rhdr = pd.concat([read_hdf(filename, "rhdr").assign(filename=filename) for filename in args.filenames],ignore_index=True) for run, df in rhdr.groupby('run'): ev = pd.concat([pd.read_hdf(filename,"ev") for filename in df.filename.values]) orphans = ev[~((ev.gtid == 0) & (ev.gtr == 0) & (ev.trg_type == 0))] orphans_per_run[run] = len(orphans[orphans.nhit >= args.nhit_thresh]) if args.output: np.savetxt(args.output,sorted([run for run, orphans in orphans_per_run.iteritems() if orphans < 100]),fmt='%i') fig = plt.figure() plt.hist(orphans_per_run.values(),bins=np.linspace(0,1000,101),histtype='step') plt.axvline(x=100,ls='--',color='k') plt.xlabel("Number of orphans with Nhit > %i" % args.nhit_thresh) plt.gca().set_yscale("log") despine(fig,trim=True) plt.tight_layout() if args.save: plt.savefig("orphans.pdf") plt.savefig("orphans.eps") else: plt.title(r"Number of High Nhit Orphans Per Run") plt.show()