#!/usr/bin/env python # Copyright (c) 2019, Anthony Latorre # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # You should have received a copy of the GNU General Public License along with # this program. If not, see . from __future__ import print_function, division import numpy as np from scipy.stats import iqr from matplotlib.lines import Line2D # on retina screens, the default plots are way too small # by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1 # Qt5 will scale everything using the dpi in ~/.Xresources import matplotlib matplotlib.use("Qt5Agg") matplotlib.rc('font', size=22) IDP_E_MINUS = 20 IDP_MU_MINUS = 22 SNOMAN_MASS = { 20: 0.511, 21: 0.511, 22: 105.658, 23: 105.658 } def plot_hist(x, label=None): # determine the bin width using the Freedman Diaconis rule # see https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule h = 2*iqr(x)/len(x)**(1/3) n = max(int((np.max(x)-np.min(x))/h),10) bins = np.linspace(np.min(x),np.max(x),n) plt.hist(x, bins=bins, histtype='step', label=label) def plot_legend(n): plt.figure(n) ax = plt.gca() handles, labels = ax.get_legend_handles_labels() new_handles = [Line2D([],[],c=h.get_edgecolor()) for h in handles] plt.legend(handles=new_handles,labels=labels) def get_stats(x): """ Returns a tuple (mean, error mean, std, error std) for the values in x. The formula for the standard error on the standard deviation comes from https://stats.stackexchange.com/questions/156518. """ mean = np.mean(x) std = np.std(x) n = len(x) u4 = np.mean((x-mean)**4) error = np.sqrt((u4-(n-3)*std**4/(n-1))/n)/(2*std) return mean, std/np.sqrt(n), std, error def std_err(x): x = x.dropna() mean = np.mean(x) std = np.std(x) n = len(x) if n == 0: return np.nan u4 = np.mean((x-mean)**4) error = np.sqrt((u4-(n-3)*std**4/(n-1))/n)/(2*std) return error if __name__ == '__main__': import argparse import matplotlib.pyplot as plt import numpy as np import h5py import pandas as pd parser = argparse.ArgumentParser("plot fit results") parser.add_argument("filenames", nargs='+', help="input files") args = parser.parse_args() # Read in all the data. # # Note: We have to add the filename as a column to each dataset since this # script is used to analyze MC data which all has the same run number. ev = pd.concat([pd.read_hdf(filename, "ev").assign(filename=filename) for filename in args.filenames]) fits = pd.concat([pd.read_hdf(filename, "fits").assign(filename=filename) for filename in args.filenames]) mcgn = pd.concat([pd.read_hdf(filename, "mcgn").assign(filename=filename) for filename in args.filenames]) # get rid of 2nd events like Michel electrons ev = ev.sort_values(['run','gtid']).groupby(['filename','evn'],as_index=False).first() # Now, we merge all three datasets together to produce a single # dataframe. To do so, we join the ev dataframe with the mcgn frame # on the evn column, and then join with the fits on the run and # gtid columns. # # At the end we will have a single dataframe with one row for each # fit, i.e. it will look like: # # >>> data # run gtid nhit, ... mcgn_x, mcgn_y, mcgn_z, ..., fit_id1, fit_x, fit_y, fit_z, ... # # Before merging, we prefix the primary seed track table with mcgn_ # and the fit table with fit_ just to make things easier. # Prefix track and fit frames mcgn = mcgn.add_prefix("mcgn_") fits = fits.add_prefix("fit_") # merge ev and mcgn on evn data = ev.merge(mcgn,left_on=['filename','evn'],right_on=['mcgn_filename','mcgn_evn']) # merge data and fits on run and gtid data = data.merge(fits,left_on=['filename','run','gtid'],right_on=['fit_filename','fit_run','fit_gtid']) # calculate true kinetic energy mass = [SNOMAN_MASS[id] for id in data['mcgn_id'].values] data['T'] = data['mcgn_energy'].values - mass data['dx'] = data['fit_x'].values - data['mcgn_x'].values data['dy'] = data['fit_y'].values - data['mcgn_y'].values data['dz'] = data['fit_z'].values - data['mcgn_z'].values data['dT'] = data['fit_energy1'].values - data['T'].values true_dir = np.dstack((data['mcgn_dirx'],data['mcgn_diry'],data['mcgn_dirz'])).squeeze() dir = np.dstack((np.sin(data['fit_theta1'])*np.cos(data['fit_phi1']), np.sin(data['fit_theta1'])*np.sin(data['fit_phi1']), np.cos(data['fit_theta1']))).squeeze() data['theta'] = np.degrees(np.arccos((true_dir*dir).sum(axis=-1))) # only select fits which have at least 2 fits data = data.groupby(['filename','run','gtid']).filter(lambda x: len(x) > 1) data_true = data[data['fit_id1'] == data['mcgn_id']] data_e = data[data['fit_id1'] == IDP_E_MINUS] data_mu = data[data['fit_id1'] == IDP_MU_MINUS] data_true = data_true.set_index(['filename','run','gtid']) data_e = data_e.set_index(['filename','run','gtid']) data_mu = data_mu.set_index(['filename','run','gtid']) data_true['ratio'] = data_mu['fit_fmin']-data_e['fit_fmin'] data_true['te'] = data_e['fit_time'] data_true['tm'] = data_mu['fit_time'] data_true['Te'] = data_e['fit_energy1'] # 100 bins between 50 MeV and 1 GeV bins = np.arange(50,1000,100) for id in [IDP_E_MINUS, IDP_MU_MINUS]: events = data_true[data_true['mcgn_id'] == id] pd_bins = pd.cut(events['T'],bins) dT = events.groupby(pd_bins)['dT'].agg(['mean','sem','std',std_err]) dx = events.groupby(pd_bins)['dx'].agg(['mean','sem','std',std_err]) dy = events.groupby(pd_bins)['dy'].agg(['mean','sem','std',std_err]) dz = events.groupby(pd_bins)['dz'].agg(['mean','sem','std',std_err]) theta = events.groupby(pd_bins)['theta'].agg(['mean','sem','std',std_err]) label = 'Muon' if id == IDP_MU_MINUS else 'Electron' T = (bins[1:] + bins[:-1])/2 plt.figure(1) plt.errorbar(T,dT['mean']*100/T,yerr=dT['sem']*100/T,fmt='o',label=label) plt.xlabel("Kinetic Energy (MeV)") plt.ylabel("Energy bias (%)") plt.title("Energy Bias") plt.legend() plt.figure(2) plt.errorbar(T,dT['std']*100/T,yerr=dT['std_err']*100/T,fmt='o',label=label) plt.xlabel("Kinetic Energy (MeV)") plt.ylabel("Energy resolution (%)") plt.title("Energy Resolution") plt.legend() plt.figure(3) plt.errorbar(T,dx['mean'],yerr=dx['sem'],fmt='o',label='%s (x)' % label) plt.errorbar(T,dy['mean'],yerr=dy['sem'],fmt='o',label='%s (y)' % label) plt.errorbar(T,dz['mean'],yerr=dz['sem'],fmt='o',label='%s (z)' % label) plt.xlabel("Kinetic Energy (MeV)") plt.ylabel("Position bias (cm)") plt.title("Position Bias") plt.legend() plt.figure(4) plt.errorbar(T,dx['std'],yerr=dx['std_err'],fmt='o',label='%s (x)' % label) plt.errorbar(T,dy['std'],yerr=dy['std_err'],fmt='o',label='%s (y)' % label) plt.errorbar(T,dz['std'],yerr=dz['std_err'],fmt='o',label='%s (z)' % label) plt.xlabel("Kinetic Energy (MeV)") plt.ylabel("Position resolution (cm)") plt.title("Position Resolution") plt.ylim((0,plt.gca().get_ylim()[1])) plt.legend() plt.figure(5) plt.errorbar(T,theta['std'],yerr=theta['std_err'],fmt='o',label=label) plt.xlabel("Kinetic Energy (MeV)") plt.ylabel("Angular resolution (deg)") plt.title("Angular Resolution") plt.ylim((0,plt.gca().get_ylim()[1])) plt.legend() plt.figure(6) plt.scatter(events['Te'],events['ratio'],label=label) plt.xlabel("Reconstructed Electron Energy (MeV)") plt.ylabel(r"Log Likelihood Ratio (e/$\mu$)") plt.title("Log Likelihood Ratio vs Reconstructed Electron Energy") plt.legend() plt.show()