#!/usr/bin/env python # Copyright (c) 2019, Anthony Latorre # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # You should have received a copy of the GNU General Public License along with # this program. If not, see . from __future__ import print_function, division import yaml try: from yaml import CLoader as Loader except ImportError: from yaml.loader import SafeLoader as Loader import numpy as np from scipy.stats import iqr from matplotlib.lines import Line2D # on retina screens, the default plots are way too small # by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1 # Qt5 will scale everything using the dpi in ~/.Xresources import matplotlib matplotlib.use("Qt5Agg") SNOMAN_MASS = { 20: 0.511, 21: 0.511, 22: 105.658, 23: 105.658 } def plot_hist(x, label=None): # determine the bin width using the Freedman Diaconis rule # see https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule h = 2*iqr(x)/len(x)**(1/3) n = max(int((np.max(x)-np.min(x))/h),10) bins = np.linspace(np.min(x),np.max(x),n) plt.hist(x, bins=bins, histtype='step', label=label) def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] if __name__ == '__main__': import argparse import matplotlib.pyplot as plt import numpy as np import pandas as pd parser = argparse.ArgumentParser("plot fit results") parser.add_argument("filenames", nargs='+', help="input files") args = parser.parse_args() fit_results = [] for filename in args.filenames: print(filename) with open(filename) as f: data = yaml.load(f.read(),Loader=Loader) for i, event in enumerate(data['data']): for ev in event['ev']: if 'fit' not in ev: continue for id, fit_result in ev['fit'].iteritems(): # FIXME: Should I just store the particle ids in the YAML # output as a list of particle ids instead of a single # integer? ids = map(int,chunks(str(id),2)) energy = 0.0 for i, ke in zip(ids,np.atleast_1d(fit_result['energy'])): energy += ke + SNOMAN_MASS[i] fit_results.append(( ev['run'], ev['gtid'], id, fit_result['posx'], fit_result['posy'], fit_result['posz'], fit_result['t0'], energy, fit_result['fmin'])) # create a dataframe # note: we have to first create a numpy structured array since there is no # way to pass a list of data types to the DataFrame constructor. See # https://github.com/pandas-dev/pandas/issues/4464 array = np.array(fit_results, dtype=[('run',np.int), # run number ('gtid',np.int), # gtid ('id',np.int), # particle id ('x', np.double), # x ('y',np.double), # y ('z',np.double), # z ('t0',np.double), # t0 ('ke',np.double), # kinetic energy ('fmin',np.double)] # negative log likelihood ) df = pd.DataFrame.from_records(array) # get the best fit df = df.sort_values('fmin').groupby(['run','gtid']).first() for id, df_id in df.groupby('id'): plt.figure() plot_hist(df_id.ke.values) plt.xlabel("Energy (MeV)") plt.title(str(id)) plt.show()