#!/usr/bin/env python # Copyright (c) 2019, Anthony Latorre # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # You should have received a copy of the GNU General Public License along with # this program. If not, see . """ Script to plot final fit results along with sidebands for the dark matter analysis. To run it just run: $ ./plot-energy [list of fit results] Currently it will plot energy distributions for external muons, michel electrons, atmospheric events with neutron followers, and prompt signal like events. Each of these plots will have a different subplot for the particle ID of the best fit, i.e. single electron, single muon, double electron, electron + muon, or double muon. """ from __future__ import print_function, division import numpy as np from scipy.stats import iqr, poisson from matplotlib.lines import Line2D from scipy.stats import iqr, norm, beta from scipy.special import spence from itertools import chain particle_id = {20: 'e', 22: r'\mu'} def plot_hist2(df, muons=False): for id, df_id in sorted(df.groupby('id')): if id == 20: plt.subplot(2,3,1) elif id == 22: plt.subplot(2,3,2) elif id == 2020: plt.subplot(2,3,4) elif id == 2022: plt.subplot(2,3,5) elif id == 2222: plt.subplot(2,3,6) if muons: plt.hist(np.log10(df_id.ke.values/1000), bins=np.linspace(0,4.5,100), histtype='step') plt.xlabel("log10(Energy (GeV))") else: bins = np.logspace(np.log10(20),np.log10(10e3),21) plt.hist(df_id.ke.values, bins=bins, histtype='step') plt.gca().set_xscale("log") plt.xlabel("Energy (MeV)") major = np.array([10,100,1000,10000]) minor = np.unique(list(chain(*list(range(i,i*10,i) for i in major[:-1])))) minor = np.setdiff1d(minor,major) plt.gca().set_xticks(major) plt.gca().set_xticks(minor,minor=True) plt.title('$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)]) + '$') if len(df): plt.tight_layout() def plot_hist(df, muons=False): for id, df_id in sorted(df.groupby('id')): if id == 20: plt.subplot(3,4,1) elif id == 22: plt.subplot(3,4,2) elif id == 2020: plt.subplot(3,4,5) elif id == 2022: plt.subplot(3,4,6) elif id == 2222: plt.subplot(3,4,7) elif id == 202020: plt.subplot(3,4,9) elif id == 202022: plt.subplot(3,4,10) elif id == 202222: plt.subplot(3,4,11) elif id == 222222: plt.subplot(3,4,12) if muons: plt.hist(np.log10(df_id.ke.values/1000), bins=np.linspace(0,4.5,100), histtype='step') plt.xlabel("log10(Energy (GeV))") else: plt.hist(df_id.ke.values, bins=np.linspace(20,10e3,100), histtype='step') plt.xlabel("Energy (MeV)") plt.title(str(id)) if len(df): plt.tight_layout() if __name__ == '__main__': import argparse import numpy as np import pandas as pd import sys import h5py from sddm.plot_energy import * from sddm.plot import * from sddm import setup_matplotlib parser = argparse.ArgumentParser("plot fit results") parser.add_argument("filenames", nargs='+', help="input files") parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds") args = parser.parse_args() setup_matplotlib(args.save) import matplotlib.pyplot as plt ev, fits = get_events(args.filenames) # First, do basic data cleaning which is done for all events. ev = ev[ev.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ITC | DC_BREAKDOWN) == 0] # 00-orphan cut ev = ev[(ev.gtid & 0xff) != 0] print("number of events after data cleaning = %i" % np.count_nonzero(ev.prompt)) # Now, we select events tagged by the muon tag which should tag only # external muons. We keep the sample of muons since it's needed later to # identify Michel electrons and to apply the muon follower cut muons = ev[(ev.dc & DC_MUON) != 0] print("number of muons = %i" % len(muons)) # Try to identify Michel electrons. Currently, the event selection is based # on Richie's thesis. Here, we do the following: # # 1. Apply more data cleaning cuts to potential Michel electrons # 2. Nhit >= 100 # 3. It must be > 800 ns and less than 20 microseconds from a prompt event # or a muon michel = ev[ev.michel] print("number of michel events = %i" % len(michel)) print("number of events after neutron follower cut = %i" % np.count_nonzero(ev.prompt & (~ev.atm))) # remove events 200 microseconds after a muon ev = ev.groupby('run',group_keys=False).apply(muon_follower_cut) # Get rid of muon events in our main event sample ev = ev[(ev.dc & DC_MUON) == 0] prompt = ev[ev.prompt & ~ev.atm] atm = ev[ev.atm] print("number of events after muon cut = %i" % len(prompt)) # Check to see if there are any events with missing fit information atm_ra = atm[['run','gtid']].to_records(index=False) muons_ra = muons[['run','gtid']].to_records(index=False) prompt_ra = prompt[['run','gtid']].to_records(index=False) michel_ra = michel[['run','gtid']].to_records(index=False) fits_ra = fits[['run','gtid']].to_records(index=False) if len(atm_ra) and np.count_nonzero(~np.isin(atm_ra,fits_ra)): print_warning("skipping %i atmospheric events because they are missing fit information!" % np.count_nonzero(~np.isin(atm_ra,fits_ra))) if len(muons_ra) and np.count_nonzero(~np.isin(muons_ra,fits_ra)): print_warning("skipping %i muon events because they are missing fit information!" % np.count_nonzero(~np.isin(muons_ra,fits_ra))) if len(prompt_ra) and np.count_nonzero(~np.isin(prompt_ra,fits_ra)): print_warning("skipping %i signal events because they are missing fit information!" % np.count_nonzero(~np.isin(prompt_ra,fits_ra))) if len(michel_ra) and np.count_nonzero(~np.isin(michel_ra,fits_ra)): print_warning("skipping %i Michel events because they are missing fit information!" % np.count_nonzero(~np.isin(michel_ra,fits_ra))) # Now, we merge the event info with the fitter info. # # Note: This means that the dataframe now contains multiple rows for each # event, one for each fit hypothesis. atm = pd.merge(fits,atm,how='inner',on=['run','gtid']) muons = pd.merge(fits,muons,how='inner',on=['run','gtid']) michel = pd.merge(fits,michel,how='inner',on=['run','gtid']) prompt = pd.merge(fits,prompt,how='inner',on=['run','gtid']) # get rid of events which don't have a fit nan = np.isnan(prompt.fmin.values) if np.count_nonzero(nan): print_warning("skipping %i signal events because the negative log likelihood is nan!" % len(prompt[nan].groupby(['run','gtid']))) prompt = prompt[~nan] nan_atm = np.isnan(atm.fmin.values) if np.count_nonzero(nan_atm): print_warning("skipping %i atmospheric events because the negative log likelihood is nan!" % len(atm[nan_atm].groupby(['run','gtid']))) atm = atm[~nan_atm] nan_muon = np.isnan(muons.fmin.values) if np.count_nonzero(nan_muon): print_warning("skipping %i muons because the negative log likelihood is nan!" % len(muons[nan_muon].groupby(['run','gtid']))) muons = muons[~nan_muon] nan_michel = np.isnan(michel.fmin.values) if np.count_nonzero(nan_michel): print_warning("skipping %i michel electron events because the negative log likelihood is nan!" % len(michel[nan_michel].groupby(['run','gtid']))) michel = michel[~nan_michel] # get the best fit prompt = prompt.sort_values('fmin').groupby(['run','gtid']).nth(0) atm = atm.sort_values('fmin').groupby(['run','gtid']).nth(0) michel_best_fit = michel.sort_values('fmin').groupby(['run','gtid']).nth(0) muon_best_fit = muons.sort_values('fmin').groupby(['run','gtid']).nth(0) muons = muons[muons.id == 22].sort_values('fmin').groupby(['run','gtid'],as_index=False).nth(0).reset_index(level=0,drop=True) # require (r/r_psup)^3 < 0.9 prompt = prompt[prompt.r_psup < 0.9] atm = atm[atm.r_psup < 0.9] print("number of events after radius cut = %i" % len(prompt)) # require psi < 6 prompt = prompt[prompt.psi < 6] atm = atm[atm.psi < 6] print("number of events after psi cut = %i" % len(prompt)) fig = plt.figure() plot_hist2(prompt) despine(fig,trim=True) if args.save: plt.savefig("prompt.pdf") plt.savefig("prompt.eps") else: plt.suptitle("Without Neutron Follower") fig = plt.figure() plot_hist2(atm) despine(fig,trim=True) if args.save: plt.savefig("atm.pdf") plt.savefig("atm.eps") else: plt.suptitle("With Neutron Follower") fig = plt.figure() plot_hist2(michel_best_fit) despine(fig,trim=True) if args.save: plt.savefig("michel_electrons.pdf") plt.savefig("michel_electrons.eps") else: plt.suptitle("Michel Electrons") fig = plt.figure() plot_hist2(muon_best_fit,muons=True) despine(fig,trim=True) if len(muon_best_fit): plt.tight_layout() if args.save: plt.savefig("external_muons.pdf") plt.savefig("external_muons.eps") else: plt.suptitle("External Muons") # Plot the energy and angular distribution for external muons fig = plt.figure() plt.subplot(2,1,1) plt.hist(muons.ke.values, bins=np.logspace(3,7,100), histtype='step') plt.xlabel("Energy (MeV)") plt.gca().set_xscale("log") plt.subplot(2,1,2) plt.hist(np.cos(muons.theta.values), bins=np.linspace(-1,1,100), histtype='step') despine(fig,trim=True) plt.xlabel(r"$\cos(\theta)$") plt.tight_layout() if args.save: plt.savefig("muon_energy_cos_theta.pdf") plt.savefig("muon_energy_cos_theta.eps") else: plt.suptitle("Muons") # For the Michel energy plot, we only look at the single particle electron # fit michel = michel[michel.id == 20].sort_values('fmin').groupby(['run','gtid'],as_index=False).nth(0).reset_index(level=0,drop=True) stopping_muons = pd.merge(muons,michel,left_on=['run','gtid'],right_on=['run','muon_gtid'],suffixes=('','_michel')) if len(stopping_muons): # project muon to PSUP stopping_muons['dx'] = stopping_muons.apply(get_dx,axis=1) # energy based on distance travelled stopping_muons['T_dx'] = dx_to_energy(stopping_muons.dx) stopping_muons['dT'] = stopping_muons['energy1'] - stopping_muons['T_dx'] fig = plt.figure() plt.hist((stopping_muons['energy1']-stopping_muons['T_dx'])*100/stopping_muons['T_dx'], bins=np.linspace(-100,100,200), histtype='step') despine(fig,trim=True) plt.xlabel("Fractional energy difference (\%)") plt.title("Fractional energy difference for Stopping Muons") plt.tight_layout() if args.save: plt.savefig("stopping_muon_fractional_energy_difference.pdf") plt.savefig("stopping_muon_fractional_energy_difference.eps") else: plt.title("Stopping Muon Fractional Energy Difference") # 100 bins between 50 MeV and 10 GeV bins = np.arange(50,10000,1000) pd_bins = pd.cut(stopping_muons['energy1'],bins) T = (bins[1:] + bins[:-1])/2 dT = stopping_muons.groupby(pd_bins)['dT'].agg(['mean','sem','std',std_err,median,median_err,iqr_std,iqr_std_err]) fig = plt.figure() plt.errorbar(T,dT['median']*100/T,yerr=dT['median_err']*100/T) despine(fig,trim=True) plt.xlabel("Kinetic Energy (MeV)") plt.ylabel(r"Energy bias (\%)") plt.tight_layout() if args.save: plt.savefig("stopping_muon_energy_bias.pdf") plt.savefig("stopping_muon_energy_bias.eps") else: plt.title("Stopping Muon Energy Bias") fig = plt.figure() plt.errorbar(T,dT['iqr_std']*100/T,yerr=dT['iqr_std_err']*100/T) despine(fig,trim=True) plt.xlabel("Kinetic Energy (MeV)") plt.ylabel(r"Energy resolution (\%)") plt.tight_layout() if args.save: plt.savefig("stopping_muon_energy_resolution.pdf") plt.savefig("stopping_muon_energy_resolution.eps") else: plt.title("Stopping Muon Energy Resolution") fig = plt.figure() bins=np.linspace(0,100,100) plt.hist(michel.ke.values, bins=bins, histtype='step', label="Dark Matter Fitter") if michel.size: plt.hist(michel[~np.isnan(michel.rsp_energy.values)].rsp_energy.values, bins=np.linspace(20,100,100), histtype='step',label="RSP") x = np.linspace(0,100,1000) y = michel_spectrum(x) y /= np.trapz(y,x=x) N = len(michel) plt.plot(x, N*y*(bins[1]-bins[0]), ls='--', color='k', label="Michel Spectrum") despine(fig,trim=True) plt.xlabel("Energy (MeV)") plt.tight_layout() plt.legend() if args.save: plt.savefig("michel_electrons_ke.pdf") plt.savefig("michel_electrons_ke.eps") else: plt.title("Michel Electrons") plt.show()