#!/usr/bin/env python """ Script for plotting solar fluxes from http://www-pnp.physics.ox.ac.uk/~barr/fluxfiles/0403i/index.html. """ from __future__ import print_function, division import numpy as np import os def splitext(path): """ Like os.path.splitext() except it returns the full extension if the filename has multiple extensions, for example: splitext('foo.tar.gz') -> 'foo', '.tar.gz' """ full_root, full_ext = os.path.splitext(path) while True: root, ext = os.path.splitext(full_root) if ext: full_ext = ext + full_ext full_root = root else: break return full_root, full_ext # Taken from https://raw.githubusercontent.com/mwaskom/seaborn/c73055b2a9d9830c6fbbace07127c370389d04dd/seaborn/utils.py def despine(fig=None, ax=None, top=True, right=True, left=False, bottom=False, offset=None, trim=False): """Remove the top and right spines from plot(s). fig : matplotlib figure, optional Figure to despine all axes of, default uses current figure. ax : matplotlib axes, optional Specific axes object to despine. top, right, left, bottom : boolean, optional If True, remove that spine. offset : int or dict, optional Absolute distance, in points, spines should be moved away from the axes (negative values move spines inward). A single value applies to all spines; a dict can be used to set offset values per side. trim : bool, optional If True, limit spines to the smallest and largest major tick on each non-despined axis. Returns ------- None """ # Get references to the axes we want if fig is None and ax is None: axes = plt.gcf().axes elif fig is not None: axes = fig.axes elif ax is not None: axes = [ax] for ax_i in axes: for side in ["top", "right", "left", "bottom"]: # Toggle the spine objects is_visible = not locals()[side] ax_i.spines[side].set_visible(is_visible) if offset is not None and is_visible: try: val = offset.get(side, 0) except AttributeError: val = offset _set_spine_position(ax_i.spines[side], ('outward', val)) # Potentially move the ticks if left and not right: maj_on = any( t.tick1line.get_visible() for t in ax_i.yaxis.majorTicks ) min_on = any( t.tick1line.get_visible() for t in ax_i.yaxis.minorTicks ) ax_i.yaxis.set_ticks_position("right") for t in ax_i.yaxis.majorTicks: t.tick2line.set_visible(maj_on) for t in ax_i.yaxis.minorTicks: t.tick2line.set_visible(min_on) if bottom and not top: maj_on = any( t.tick1line.get_visible() for t in ax_i.xaxis.majorTicks ) min_on = any( t.tick1line.get_visible() for t in ax_i.xaxis.minorTicks ) ax_i.xaxis.set_ticks_position("top") for t in ax_i.xaxis.majorTicks: t.tick2line.set_visible(maj_on) for t in ax_i.xaxis.minorTicks: t.tick2line.set_visible(min_on) if trim: # clip off the parts of the spines that extend past major ticks xticks = ax_i.get_xticks() if xticks.size: firsttick = np.compress(xticks >= min(ax_i.get_xlim()), xticks)[0] lasttick = np.compress(xticks <= max(ax_i.get_xlim()), xticks)[-1] ax_i.spines['bottom'].set_bounds(firsttick, lasttick) ax_i.spines['top'].set_bounds(firsttick, lasttick) newticks = xticks.compress(xticks <= lasttick) newticks = newticks.compress(newticks >= firsttick) ax_i.set_xticks(newticks) xticks_minor = [t for t in ax_i.get_xticks(minor=True) if firsttick < t < lasttick] ax_i.set_xticks(xticks_minor,minor=True) yticks = ax_i.get_yticks() if yticks.size: firsttick = np.compress(yticks >= min(ax_i.get_ylim()), yticks)[0] lasttick = np.compress(yticks <= max(ax_i.get_ylim()), yticks)[-1] ax_i.spines['left'].set_bounds(firsttick, lasttick) ax_i.spines['right'].set_bounds(firsttick, lasttick) newticks = yticks.compress(yticks <= lasttick) newticks = newticks.compress(newticks >= firsttick) ax_i.set_yticks(newticks) yticks_minor = [t for t in ax_i.get_yticks(minor=True) if firsttick < t < lasttick] ax_i.set_yticks(yticks_minor,minor=True) # Data is in the form: Fluxes in bins of neutrino energy (equally spaced bins # in logE with 10 bins per decade with the low edge of the first bin at 100 # MeV) and zenith angle (20 bins equally spaced in cos(zenith) with bin width # 0.1), integrated over azimuth. Note logE means log to base e. Fluxes below 10 # GeV are from the 3D calculation. # The files all have the same format. After the initial comment lines (starting # with a # character), the files contain one line per bin. No smoothoing # between bins has been done. The columns are: # # 1. Energy at centre of bin in GeV # 2. Zenith files: Cos(zenith) at centre of bin # Azimuth files: Azimuth at centre of bin (degrees) # 3. Flux in dN/dlogE in /m**2/steradian/sec # 4. MC Statistical error on the flux # 5. Number of unweighted events entering the bin (not too useful) if __name__ == '__main__': import argparse import matplotlib import glob parser = argparse.ArgumentParser("plot solar fluxes") parser.add_argument("filenames", nargs='+', help="filenames of flux files") parser.add_argument("--save", action="store_true", default=False, help="save plots") args = parser.parse_args() if args.save: # default \textwidth for a fullpage article in Latex is 16.50764 cm. # You can figure this out by compiling the following TeX document: # # \documentclass{article} # \usepackage{fullpage} # \usepackage{layouts} # \begin{document} # textwidth in cm: \printinunitsof{cm}\prntlen{\textwidth} # \end{document} width = 16.50764 width /= 2.54 # cm -> inches # According to this page: # http://www-personal.umich.edu/~jpboyd/eng403_chap2_tuftegospel.pdf, # Tufte suggests an aspect ratio of 1.5 - 1.6. height = width/1.5 FIGSIZE = (width,height) import matplotlib.pyplot as plt font = {'family':'serif', 'serif': ['computer modern roman']} plt.rc('font',**font) plt.rc('text', usetex=True) else: # on retina screens, the default plots are way too small # by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1 # Qt5 will scale everything using the dpi in ~/.Xresources import matplotlib matplotlib.use("Qt5Agg") import matplotlib.pyplot as plt # Default figure size. Currently set to my monitor width and height so that # things are properly formatted FIGSIZE = (13.78,7.48) font = {'family':'serif', 'serif': ['computer modern roman']} plt.rc('font',**font) # Make the defalt font bigger plt.rc('font', size=22) plt.rc('text', usetex=True) fig = plt.figure(figsize=FIGSIZE) colors = plt.rcParams["axes.prop_cycle"].by_key()["color"] linestyles = ['-','--'] def key(filename): head, tail = os.path.split(filename) k = 0 if tail.startswith('fmax'): k += 1 if 'nue' in tail: k += 10 elif 'nbe' in tail: k += 20 elif 'num' in tail: k += 30 elif 'nbm' in tail: k += 40 elif 'nut' in tail: k += 50 elif 'nbt' in tail: k += 60 return k for filename in sorted(args.filenames,key=key): head, tail = os.path.split(filename) print(filename) data = np.genfromtxt(filename) shape1 = len(np.unique(data[:,0])) x = data[:,0].reshape((-1,shape1)) y = data[:,1].reshape((-1,shape1)) z = data[:,2].reshape((-1,shape1)) # Convert to MeV x *= 1000.0 z /= 1000.0 zbins = np.linspace(-1,1,21) dz = zbins[1] - zbins[0] x = x[0] # Integrate over cos(theta) and multiply by 2*pi to convert 3D flux to # a total flux y = np.sum(z*dz,axis=0)*2*np.pi if 'sno_nue' in tail: plt.plot(x,y,color=colors[0],linestyle=linestyles[0],label=r'$\nu_e$') elif 'sno_nbe' in tail: plt.plot(x,y,color=colors[0],linestyle=linestyles[1],label=r'$\overline{\nu}_e$') elif 'sno_num' in tail: plt.plot(x,y,color=colors[1],linestyle=linestyles[0],label=r'$\nu_\mu$') elif 'sno_nbm' in tail: plt.plot(x,y,color=colors[1],linestyle=linestyles[1],label=r'$\overline{\nu}_\mu$') elif 'sno_nut' in tail: plt.plot(x,y,color=colors[2],linestyle=linestyles[0],label=r'$\nu_\tau$') elif 'sno_nbt' in tail: plt.plot(x,y,color=colors[2],linestyle=linestyles[1],label=r'$\overline{\nu}_\tau$') plt.gca().set_xscale("log") plt.gca().set_yscale("log") despine(fig,trim=True) plt.xlabel("$E$ (MeV)") plt.ylabel(r"$\mathrm{d}\Phi/\mathrm{d}E$ (1/$\mathrm{m}^2$/sec/MeV)") plt.legend() plt.tight_layout() if args.save: plt.savefig("irc01_atmospheric_flux.pdf") plt.savefig("irc01_atmospheric_flux.eps") plt.show()