#!/usr/bin/env python # Copyright (c) 2019, Anthony Latorre # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # You should have received a copy of the GNU General Public License along with # this program. If not, see . from __future__ import print_function, division import numpy as np from scipy.stats import iqr import nlopt from scipy.stats import poisson import contextlib import sys from math import exp import emcee from scipy.optimize import brentq from scipy.stats import truncnorm from matplotlib.lines import Line2D try: from emcee import moves except ImportError: print("emcee version 2.2.1 is required",file=sys.stderr) sys.exit(1) # Taken from https://raw.githubusercontent.com/mwaskom/seaborn/c73055b2a9d9830c6fbbace07127c370389d04dd/seaborn/utils.py def despine(fig=None, ax=None, top=True, right=True, left=False, bottom=False, offset=None, trim=False): """Remove the top and right spines from plot(s). fig : matplotlib figure, optional Figure to despine all axes of, default uses current figure. ax : matplotlib axes, optional Specific axes object to despine. top, right, left, bottom : boolean, optional If True, remove that spine. offset : int or dict, optional Absolute distance, in points, spines should be moved away from the axes (negative values move spines inward). A single value applies to all spines; a dict can be used to set offset values per side. trim : bool, optional If True, limit spines to the smallest and largest major tick on each non-despined axis. Returns ------- None """ # Get references to the axes we want if fig is None and ax is None: axes = plt.gcf().axes elif fig is not None: axes = fig.axes elif ax is not None: axes = [ax] for ax_i in axes: for side in ["top", "right", "left", "bottom"]: # Toggle the spine objects is_visible = not locals()[side] ax_i.spines[side].set_visible(is_visible) if offset is not None and is_visible: try: val = offset.get(side, 0) except AttributeError: val = offset _set_spine_position(ax_i.spines[side], ('outward', val)) # Potentially move the ticks if left and not right: maj_on = any( t.tick1line.get_visible() for t in ax_i.yaxis.majorTicks ) min_on = any( t.tick1line.get_visible() for t in ax_i.yaxis.minorTicks ) ax_i.yaxis.set_ticks_position("right") for t in ax_i.yaxis.majorTicks: t.tick2line.set_visible(maj_on) for t in ax_i.yaxis.minorTicks: t.tick2line.set_visible(min_on) if bottom and not top: maj_on = any( t.tick1line.get_visible() for t in ax_i.xaxis.majorTicks ) min_on = any( t.tick1line.get_visible() for t in ax_i.xaxis.minorTicks ) ax_i.xaxis.set_ticks_position("top") for t in ax_i.xaxis.majorTicks: t.tick2line.set_visible(maj_on) for t in ax_i.xaxis.minorTicks: t.tick2line.set_visible(min_on) if trim: # clip off the parts of the spines that extend past major ticks xticks = ax_i.get_xticks() if xticks.size: firsttick = np.compress(xticks >= min(ax_i.get_xlim()), xticks)[0] lasttick = np.compress(xticks <= max(ax_i.get_xlim()), xticks)[-1] ax_i.spines['bottom'].set_bounds(firsttick, lasttick) ax_i.spines['top'].set_bounds(firsttick, lasttick) newticks = xticks.compress(xticks <= lasttick) newticks = newticks.compress(newticks >= firsttick) ax_i.set_xticks(newticks) yticks = ax_i.get_yticks() if yticks.size: firsttick = np.compress(yticks >= min(ax_i.get_ylim()), yticks)[0] lasttick = np.compress(yticks <= max(ax_i.get_ylim()), yticks)[-1] ax_i.spines['left'].set_bounds(firsttick, lasttick) ax_i.spines['right'].set_bounds(firsttick, lasttick) newticks = yticks.compress(yticks <= lasttick) newticks = newticks.compress(newticks >= firsttick) ax_i.set_yticks(newticks) # Lower bound for probabilities in fit. We set this to be nonzero to prevent # nans in case an expected value is predicted to be zero. EPSILON = 1e-10 def get_proposal_func(stepsizes, low, high): """ Returns a function which produces proposal steps for a Metropolis Hastings MCMC. This function can then be passed to emcee.moves.MHMove(). Steps are proposed according to a truncated normal distribution with mean at the current position and with standard deviations given by stepsizes. The bounds for each step are given by the two arrays low and high. """ stepsizes = np.atleast_1d(stepsizes) low = np.atleast_1d(low) high = np.atleast_1d(high) def proposal(x0, random): """ Returns a tuple of proposed positions and the log-ratio of the proposal probabilities. x0 should be a (K,ndim) dimensional numpy array where K is the number of walkers and ndim is the number of dimensions in the likelihood function. """ # calculate a and b needed for truncnorm # Note: These are not just low and high b/c # # The standard form of this distribution is a standard normal # truncated to the range [a, b] --- notice that a and b are defined # over the domain of the standard normal. To convert clip values # for a specific mean and standard deviation, use:: # # a, b = (myclip_a - my_mean) / my_std, (myclip_b - my_mean) / my_std a, b = (low - x0)/stepsizes, (high - x0)/stepsizes x = truncnorm.rvs(a,b,x0,stepsizes,random_state=random) # Note: Should be able to do this: # # log_p_x_given_x0 = truncnorm.logpdf(x,a,b,x0,stepsizes).sum(axis=1) # # but I think there is a bug in truncnorm.logpdf() which barfs when # passed 2D arrays, so instead we just loop over the first axis. log_p_x_given_x0 = np.empty(x0.shape[0]) for i in range(x0.shape[0]): log_p_x_given_x0[i] = truncnorm.logpdf(x[i],a[i],b[i],x0[i],stepsizes).sum() a, b = (low - x)/stepsizes, (high - x)/stepsizes # Note: Should be able to do this: # # log_p_x0_given_x = truncnorm.logpdf(x0,a,b,x,stepsizes).sum(axis=1) # # but I think there is a bug in truncnorm.logpdf() which barfs when # passed 2D arrays, so instead we just loop over the first axis. log_p_x0_given_x = np.empty(x0.shape[0]) for i in range(x0.shape[0]): log_p_x0_given_x[i] = truncnorm.logpdf(x0[i],a[i],b[i],x[i],stepsizes).sum() return x, log_p_x0_given_x - log_p_x_given_x0 return proposal def estimate_errors(nll, xopt, constraints): """ Return approximate 1 sigma errors for each parameter assuming all parameters are uncorrelated. """ nll_xopt = nll(xopt) def root(x, xopt, i): """ Function to bisect where the negative log likelihood reaches 0.5 from the minimum. """ xtest = xopt.copy() xtest[i] = x for constraint in constraints: if constraint(xtest) >= 0: xtest = constraint.renormalize(xtest,i) return nll(xtest) - (nll_xopt + 0.5) errors = np.empty_like(xopt) for i in range(len(xopt)): if i < 6: xlo = brentq(root,0,xopt[i],args=(xopt,i)) xhi = brentq(root,xopt[i],1e9,args=(xopt,i)) else: xlo = brentq(root,0,xopt[i],args=(xopt,i)) xhi = brentq(root,xopt[i],1,args=(xopt,i)) errors[i] = max(xopt[i]-xlo,xhi-xopt[i]) return errors def metropolis_hastings(nll, x0, stepsizes=None, size=1000): x = np.asarray(x0) if stepsizes is None: stepsizes = np.ones_like(x) else: stepsizes = np.asarray(stepsizes) accept = 0 nll_old = nll(x) samples = np.empty((size,len(x0)),dtype=np.double) try: for i in range(size): if i % 100 == 0: sys.stdout.write("\r%i/%i acceptance rate = %i/%i = %.2g%%" % (i+1,size,accept,i+1,accept*100/float(i+1))) sys.stdout.flush() xnew = x + np.random.randn(len(x))*stepsizes nll_new = nll(xnew) if nll_new < nll_old or np.random.rand() < exp(nll_old-nll_new): x = xnew nll_new = nll_old accept += 1 samples[i] = x except KeyboardInterrupt: sys.stdout.write("\n") sys.stdout.flush() print("ctrl-c caught. quitting...") samples.resize((i,len(x))) else: sys.stdout.write("\n") sys.stdout.flush() return samples # from https://stackoverflow.com/questions/2891790/how-to-pretty-print-a-numpy-array-without-scientific-notation-and-with-given-pre @contextlib.contextmanager def printoptions(*args, **kwargs): original = np.get_printoptions() np.set_printoptions(*args, **kwargs) try: yield finally: np.set_printoptions(**original) # from https://stackoverflow.com/questions/287871/how-to-print-colored-text-in-terminal-in-python class bcolors: HEADER = '\033[95m' OKBLUE = '\033[94m' OKGREEN = '\033[92m' WARNING = '\033[93m' FAIL = '\033[91m' ENDC = '\033[0m' BOLD = '\033[1m' UNDERLINE = '\033[4m' SNOMAN_MASS = { 20: 0.511, 21: 0.511, 22: 105.658, 23: 105.658 } AV_RADIUS = 600.0 PSUP_RADIUS = 840.0 # Data cleaning bitmasks. DC_MUON = 0x1 DC_JUNK = 0x2 DC_CRATE_ISOTROPY = 0x4 DC_QVNHIT = 0x8 DC_NECK = 0x10 DC_FLASHER = 0x20 DC_ESUM = 0x40 DC_OWL = 0x80 DC_OWL_TRIGGER = 0x100 DC_FTS = 0x200 DC_ITC = 0x400 DC_BREAKDOWN = 0x800 def plot_hist(df, title=None, muons=False): for id, df_id in sorted(df.groupby('id')): if id == 20: plt.subplot(3,4,1) elif id == 22: plt.subplot(3,4,2) elif id == 2020: plt.subplot(3,4,5) elif id == 2022: plt.subplot(3,4,6) elif id == 2222: plt.subplot(3,4,7) elif id == 202020: plt.subplot(3,4,9) elif id == 202022: plt.subplot(3,4,10) elif id == 202222: plt.subplot(3,4,11) elif id == 222222: plt.subplot(3,4,12) if muons: plt.hist(df_id.ke.values, bins=np.linspace(20,1000e3,100), histtype='step') else: plt.hist(df_id.ke.values, bins=np.linspace(20,10e3,100), histtype='step') plt.xlabel("Energy (MeV)") plt.title(str(id)) if title: plt.suptitle(title) if len(df): plt.tight_layout() def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def print_warning(msg): print(bcolors.FAIL + msg + bcolors.ENDC,file=sys.stderr) def unwrap(p, delta, axis=-1): """ A modified version of np.unwrap() useful for unwrapping the 50 MHz clock. It unwraps discontinuities bigger than delta/2 by delta. Example: >>> a = np.arange(10) % 5 >>> a array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4]) >>> unwrap(a,5) array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.]) In the case of the 50 MHz clock delta should be 0x7ffffffffff*20.0. """ p = np.asarray(p) nd = p.ndim dd = np.diff(p, axis=axis) slice1 = [slice(None, None)]*nd # full slices slice1[axis] = slice(1, None) slice1 = tuple(slice1) ddmod = np.mod(dd + delta/2, delta) - delta/2 np.copyto(ddmod, delta/2, where=(ddmod == -delta/2) & (dd > 0)) ph_correct = ddmod - dd np.copyto(ph_correct, 0, where=abs(dd) < delta/2) up = np.array(p, copy=True, dtype='d') up[slice1] = p[slice1] + ph_correct.cumsum(axis) return up def unwrap_50_mhz_clock(gtr): """ Unwrap an array with 50 MHz clock times. These times should all be in nanoseconds and come from the KEV_GTR variable in the EV bank. Note: We assume here that the events are already ordered contiguously by GTID, so you shouldn't pass an array with multiple runs! """ return unwrap(gtr,0x7ffffffffff*20.0) def retrigger_cut(ev): """ Cuts all retrigger events. """ return ev[ev.dt > 500] def breakdown_follower_cut(ev): """ Cuts all events within 1 second of breakdown events. """ breakdowns = ev[ev.dc & DC_BREAKDOWN != 0] return ev[~np.any((ev.gtr.values > breakdowns.gtr.values[:,np.newaxis]) & \ (ev.gtr.values < breakdowns.gtr.values[:,np.newaxis] + 1e9),axis=0)] def flasher_follower_cut(ev): """ Cuts all events within 200 microseconds of flasher events. """ flashers = ev[ev.dc & DC_FLASHER != 0] return ev[~np.any((ev.gtr.values > flashers.gtr.values[:,np.newaxis]) & \ (ev.gtr.values < flashers.gtr.values[:,np.newaxis] + 200e3),axis=0)] def muon_follower_cut(ev): """ Cuts all events 200 microseconds after a muon. """ muons = ev[ev.dc & DC_MUON != 0] return ev[~np.any((ev.gtr.values > muons.gtr.values[:,np.newaxis]) & \ (ev.gtr.values < muons.gtr.values[:,np.newaxis] + 200e3),axis=0)] def michel_cut(ev): """ Looks for Michel electrons after muons. """ prompt_plus_muons = ev[ev.prompt | ((ev.dc & DC_MUON) != 0)] # Michel electrons and neutrons can be any event which is not a prompt # event follower = ev[~ev.prompt] # require Michel events to pass more of the SNO data cleaning cuts michel = follower[follower.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ESUM | DC_OWL | DC_OWL_TRIGGER | DC_FTS) == 0] michel = michel[michel.nhit >= 100] # Accept events which had a muon more than 800 nanoseconds but less # than 20 microseconds before them. The 800 nanoseconds cut comes from # Richie's thesis. He also mentions that the In Time Channel Spread Cut # is very effective at cutting electrons events caused by muons, so I # should implement that. # # Note: We currently don't look across run boundaries. This should be a # *very* small effect, and the logic to do so would be very complicated # since I would have to deal with 50 MHz clock rollovers, etc. # # Do a simple python for loop here over the runs since we create # temporary arrays with shape (michel.size,prompt_plus_muons.size) # which could be too big for the full dataset. # # There might be some clever way to do this without the loop in Pandas, # but I don't know how. if prompt_plus_muons.size and michel.size: return michel[np.any((michel.gtr.values > prompt_plus_muons.gtr.values[:,np.newaxis] + 800) & \ (michel.gtr.values < prompt_plus_muons.gtr.values[:,np.newaxis] + 20e3),axis=0)] else: return pd.DataFrame(columns=ev.columns) def atmospheric_events(ev): """ Tags atmospheric events which have a neutron follower. """ prompt = ev[ev.prompt] # Michel electrons and neutrons can be any event which is not a prompt # event follower = ev[~ev.prompt] ev['atm'] = np.zeros(len(ev),dtype=np.bool) if prompt.size and follower.size: # neutron followers have to obey stricter set of data cleaning cuts neutron = follower[follower.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ESUM | DC_OWL | DC_OWL_TRIGGER | DC_FTS) == 0] neutron = neutron[~np.isnan(neutron.ftp_x) & ~np.isnan(neutron.rsp_energy)] r = np.sqrt(neutron.ftp_x**2 + neutron.ftp_y**2 + neutron.ftp_z**2) neutron = neutron[r < AV_RADIUS] neutron = neutron[neutron.rsp_energy > 4.0] # neutron events accepted after 20 microseconds and before 250 ms (50 ms during salt) ev.loc[ev.prompt,'atm'] = np.any((neutron.gtr.values > prompt.gtr.values[:,np.newaxis] + 20e3) & \ (neutron.gtr.values < prompt.gtr.values[:,np.newaxis] + 250e6),axis=1) return ev def gtid_sort(ev, first_gtid): """ Adds 0x1000000 to the gtid_sort column for all gtids before the first gtid in a run, which should be passed as a dictionary. This column can then be used to sort the events sequentially. This function should be passed to ev.groupby('run').apply(). We use this idiom instead of just looping over the groupby results since groupby() makes a copy of the dataframe, i.e. for run, ev_run in ev.groupby('run'): ev_run.loc[ev_run.gtid < first_gtid[run],'gtid_sort'] += 0x1000000 would produce a SettingWithCopyWarning, so instead we use: ev = ev.groupby('run',as_index=False).apply(gtid_sort,first_gtid=first_gtid) which doesn't have this problem. """ # see https://stackoverflow.com/questions/32460593/including-the-group-name-in-the-apply-function-pandas-python run = ev.name if run not in first_gtid: print_warning("No RHDR bank for run %i! Assuming first event is the first GTID." % run) first_gtid[run] = ev.gtid.iloc[0] ev.loc[ev.gtid < first_gtid[run],'gtid_sort'] += 0x1000000 return ev def prompt_event(ev): ev['prompt'] = (ev.nhit >= 100) ev.loc[ev.prompt,'prompt'] &= np.concatenate(([True],np.diff(ev[ev.prompt].gtr.values) > 250e6)) return ev def radius_cut(ev): ev['radius_cut'] = np.digitize((ev.r/PSUP_RADIUS)**3,(0.9,)) return ev def udotr_cut(ev): ev['udotr_cut'] = np.digitize(ev.udotr,(-0.5,)) return ev def psi_cut(ev): ev['psi_cut'] = np.digitize(ev.psi,(6.0,)) return ev def cos_theta_cut(ev): ev['cos_theta_cut'] = np.digitize(ev.cos_theta,(-0.5,)) return ev def z_cut(ev): ev['z_cut'] = np.digitize(ev.z,(0.0,)) return ev class Constraint(object): def __init__(self, range): self.range = range def __call__(self, x, grad=None): return np.sum(x[self.range]) - 1 + EPSILON def renormalize(self, x, fix): if fix not in self.range: return x x = x.copy() while self(x) >= 0: for i in self.range: if i == fix: continue x[i] -= self(x) return x def renormalize_no_fix(self, x): x = x.copy() while self(x) >= 0: for i in self.range: if x[i] < 10*EPSILON: continue x[i] -= x[i]/2.0 return x # Constraint to enforce the fact that P(r,psi,z,udotr|muon) all add up to 1.0. # In the likelihood function we set the last possibility for r and udotr equal # to 1.0 minus the others. Therefore, we need to enforce the fact that the # others must add up to less than 1. muon_r_psi_z_udotr = Constraint(range(11,26)) # Constraint to enforce the fact that P(z,udotr|noise) all add up to 1.0. In # the likelihood function we set the last possibility for r and udotr equal to # 1.0 minus the others. Therefore, we need to enforce the fact that the others # must add up to less than 1. noise_z_udotr = Constraint(range(28,31)) # Constraint to enforce the fact that P(r,z,udotr|neck) all add up to 1.0. In # the likelihood function we set the last possibility for r and udotr equal to # 1.0 minus the others. Therefore, we need to enforce the fact that the others # must add up to less than 1. neck_r_z_udotr = Constraint(range(31,38)) # Constraint to enforce the fact that P(r,udotr|flasher) all add up to 1.0. In # the likelihood function we set the last possibility for r and udotr equal to # 1.0 minus the others. Therefore, we need to enforce the fact that the others # must add up to less than 1 flasher_r_udotr = Constraint(range(39,42)) # Constraint to enforce the fact that P(r,udotr|breakdown) all add up to 1.0. # In the likelihood function we set the last possibility for r and udotr equal # to 1.0 minus the others. Therefore, we need to enforce the fact that the # others must add up to less than 1. breakdown_r_udotr = Constraint(range(44,47)) def make_nll(data, sacrifice,constraints): def nll(x, grad=None, fill_value=1e9): if grad is not None and grad.size > 0: raise Exception("nll got passed grad!") nll = 0.0 # Here we explicitly return a crazy high value if one of the # constraints is violated. When using nlopt it should respect all the # constraints, *but* later when we do the Metropolis Hastings algorithm # we don't have any way to add the constraints explicitly. for constraint in constraints: if constraint(x) > 0: nll += fill_value + 1e4*constraint(x)**2 if (x <= 0).any() or (x[6:] >= 1).any(): nll += fill_value + 1e4*np.sum((x[x < 0])**2) + 1e4*np.sum((x[6:][x[6:] > 1]-1)**2) if nll: return nll (mu_signal, mu_muon, mu_noise, mu_neck, mu_flasher, mu_breakdown, contamination_muon, contamination_noise, contamination_neck, contamination_flasher, contamination_breakdown, p_r_psi_z_udotr_muon_lolololo, # 11 p_r_psi_z_udotr_muon_lololohi, p_r_psi_z_udotr_muon_lolohilo, p_r_psi_z_udotr_muon_lolohihi, p_r_psi_z_udotr_muon_lohilolo, p_r_psi_z_udotr_muon_lohilohi, p_r_psi_z_udotr_muon_lohihilo, p_r_psi_z_udotr_muon_lohihihi, p_r_psi_z_udotr_muon_hilololo, p_r_psi_z_udotr_muon_hilolohi, p_r_psi_z_udotr_muon_hilohilo, p_r_psi_z_udotr_muon_hilohihi, p_r_psi_z_udotr_muon_hihilolo, p_r_psi_z_udotr_muon_hihilohi, p_r_psi_z_udotr_muon_hihihilo, p_r_noise_lo, p_psi_noise_lo, # 26, 27 p_z_udotr_noise_lolo, # 28 p_z_udotr_noise_lohi, p_z_udotr_noise_hilo, p_r_z_udotr_neck_lololo, # 31 p_r_z_udotr_neck_lolohi, p_r_z_udotr_neck_lohilo, p_r_z_udotr_neck_lohihi, p_r_z_udotr_neck_hilolo, p_r_z_udotr_neck_hilohi, p_r_z_udotr_neck_hihilo, p_psi_neck_lo, # 38 p_r_udotr_flasher_lolo, p_r_udotr_flasher_lohi, p_r_udotr_flasher_hilo, # 39, ..., 41 p_psi_flasher_lo, p_z_flasher_lo, p_r_udotr_breakdown_lolo, p_r_udotr_breakdown_lohi, p_r_udotr_breakdown_hilo, # 44, ..., 46 p_psi_breakdown_lo, p_z_breakdown_lo, p_neck_given_muon) = x p_r_udotr_flasher_hihi = 1-p_r_udotr_flasher_lolo-p_r_udotr_flasher_lohi-p_r_udotr_flasher_hilo p_r_udotr_breakdown_hihi = 1-p_r_udotr_breakdown_lolo-p_r_udotr_breakdown_lohi-p_r_udotr_breakdown_hilo p_r_psi_z_udotr_muon_hihihihi = 1 - \ p_r_psi_z_udotr_muon_lolololo - \ p_r_psi_z_udotr_muon_lololohi - \ p_r_psi_z_udotr_muon_lolohilo - \ p_r_psi_z_udotr_muon_lolohihi - \ p_r_psi_z_udotr_muon_lohilolo - \ p_r_psi_z_udotr_muon_lohilohi - \ p_r_psi_z_udotr_muon_lohihilo - \ p_r_psi_z_udotr_muon_lohihihi - \ p_r_psi_z_udotr_muon_hilololo - \ p_r_psi_z_udotr_muon_hilolohi - \ p_r_psi_z_udotr_muon_hilohilo - \ p_r_psi_z_udotr_muon_hilohihi - \ p_r_psi_z_udotr_muon_hihilolo - \ p_r_psi_z_udotr_muon_hihilohi - \ p_r_psi_z_udotr_muon_hihihilo p_r_z_udotr_neck_hihihi = 1 - p_r_z_udotr_neck_lololo - p_r_z_udotr_neck_lolohi - p_r_z_udotr_neck_lohilo - p_r_z_udotr_neck_lohihi - p_r_z_udotr_neck_hilolo - p_r_z_udotr_neck_hilohi - p_r_z_udotr_neck_hihilo p_z_udotr_noise_hihi = 1 - p_z_udotr_noise_lolo - p_z_udotr_noise_lohi - p_z_udotr_noise_hilo # Muon events # first 6 parameters are the mean number of signal and bgs p_muon = np.array([\ [[[p_r_psi_z_udotr_muon_lolololo, p_r_psi_z_udotr_muon_lololohi], \ [p_r_psi_z_udotr_muon_lolohilo, p_r_psi_z_udotr_muon_lolohihi]], \ [[p_r_psi_z_udotr_muon_lohilolo, p_r_psi_z_udotr_muon_lohilohi], \ [p_r_psi_z_udotr_muon_lohihilo, p_r_psi_z_udotr_muon_lohihihi]]], \ [[[p_r_psi_z_udotr_muon_hilololo, p_r_psi_z_udotr_muon_hilolohi], \ [p_r_psi_z_udotr_muon_hilohilo, p_r_psi_z_udotr_muon_hilohihi]], \ [[p_r_psi_z_udotr_muon_hihilolo, p_r_psi_z_udotr_muon_hihilohi], \ [p_r_psi_z_udotr_muon_hihihilo, p_r_psi_z_udotr_muon_hihihihi]]]]) expected_muon = p_muon*contamination_muon*mu_muon + sacrifice['muon']*mu_signal nll -= poisson.logpmf(data['muon'],expected_muon).sum() # Noise events p_r_noise = np.array([p_r_noise_lo,1-p_r_noise_lo]) p_psi_noise = np.array([p_psi_noise_lo,1-p_psi_noise_lo]) p_z_udotr_noise = np.array([\ [p_z_udotr_noise_lolo,p_z_udotr_noise_lohi], [p_z_udotr_noise_hilo,p_z_udotr_noise_hihi]]) p_noise = p_r_noise[:,np.newaxis,np.newaxis,np.newaxis]*p_psi_noise[:,np.newaxis,np.newaxis]*p_z_udotr_noise expected_noise = p_noise*contamination_noise*mu_noise + sacrifice['noise']*mu_signal nll -= poisson.logpmf(data['noise'],expected_noise).sum() # Neck events # FIXME: for now assume parameterized same as muon p_r_z_udotr_neck = np.array([\ [[p_r_z_udotr_neck_lololo, p_r_z_udotr_neck_lolohi], \ [p_r_z_udotr_neck_lohilo, p_r_z_udotr_neck_lohihi]], \ [[p_r_z_udotr_neck_hilolo, p_r_z_udotr_neck_hilohi], \ [p_r_z_udotr_neck_hihilo, p_r_z_udotr_neck_hihihi]]]) p_psi_neck = np.array([p_psi_neck_lo,1-p_psi_neck_lo]) p_neck = p_r_z_udotr_neck[:,np.newaxis,:,:]*p_psi_neck[:,np.newaxis,np.newaxis] expected_neck = p_neck*contamination_neck*mu_neck + sacrifice['neck']*mu_signal # FIXME: pdf should be different for muon given neck expected_neck += p_muon*p_neck_given_muon*mu_muon nll -= poisson.logpmf(data['neck'],expected_neck).sum() # Flasher events p_r_udotr_flasher = np.array([\ [p_r_udotr_flasher_lolo,p_r_udotr_flasher_lohi], \ [p_r_udotr_flasher_hilo,p_r_udotr_flasher_hihi]]) p_psi_flasher = np.array([p_psi_flasher_lo,1-p_psi_flasher_lo]) p_z_flasher = np.array([p_z_flasher_lo,1-p_z_flasher_lo]) p_flasher = p_r_udotr_flasher[:,np.newaxis,np.newaxis,:]*p_psi_flasher[:,np.newaxis,np.newaxis]*p_z_flasher[:,np.newaxis] expected_flasher = p_flasher*contamination_flasher*mu_flasher + sacrifice['flasher']*mu_signal nll -= poisson.logpmf(data['flasher'],expected_flasher).sum() # Breakdown events p_r_udotr_breakdown = np.array([\ [p_r_udotr_breakdown_lolo,p_r_udotr_breakdown_lohi], \ [p_r_udotr_breakdown_hilo,p_r_udotr_breakdown_hihi]]) p_psi_breakdown = np.array([p_psi_breakdown_lo,1-p_psi_breakdown_lo]) p_z_breakdown = np.array([p_z_breakdown_lo,1-p_z_breakdown_lo]) p_breakdown = p_r_udotr_breakdown[:,np.newaxis,np.newaxis,:]*p_psi_breakdown[:,np.newaxis,np.newaxis]*p_z_breakdown[:,np.newaxis] expected_breakdown = p_breakdown*contamination_breakdown*mu_breakdown + sacrifice['breakdown']*mu_signal nll -= poisson.logpmf(data['breakdown'],expected_breakdown).sum() # Signal like events expected_signal = np.zeros_like(expected_muon) expected_signal += mu_signal*sacrifice['signal'] expected_signal += p_muon*(1-contamination_muon)*mu_muon expected_signal += p_neck*(1-contamination_neck)*mu_neck expected_signal += p_noise*(1-contamination_noise)*mu_noise expected_signal += p_flasher*(1-contamination_flasher)*mu_flasher expected_signal += p_breakdown*(1-contamination_breakdown)*mu_breakdown nll -= poisson.logpmf(data['signal'],expected_signal).sum() if not np.isfinite(nll): print("x = ", x) print("p_r_z_udotr_neck = ", p_r_z_udotr_neck) print("expected_muon = ", expected_muon) print("expected_noise = ", expected_noise) print("expected_neck = ", expected_neck) print("expected_flasher = ", expected_flasher) print("expected_breakdown = ", expected_breakdown) print("nll is not finite!") sys.exit(0) return nll return nll if __name__ == '__main__': import argparse import matplotlib.pyplot as plt import numpy as np import pandas as pd import sys import h5py parser = argparse.ArgumentParser("plot fit results") parser.add_argument("filenames", nargs='+', help="input files") parser.add_argument("--save", action="store_true", default=False, help="save plots") args = parser.parse_args() for filename in args.filenames: ev = pd.read_hdf(filename,"ev") ev = pd.concat([pd.read_hdf(filename, "ev") for filename in args.filenames],ignore_index=True) fits = pd.concat([pd.read_hdf(filename, "fits") for filename in args.filenames],ignore_index=True) rhdr = pd.concat([pd.read_hdf(filename, "rhdr") for filename in args.filenames],ignore_index=True) first_gtid = rhdr.set_index('run').to_dict()['first_gtid'] # First, remove junk events since orphans won't have a 50 MHz clock and so # could screw up the 50 MHz clock unwrapping ev = ev[ev.dc & DC_JUNK == 0] # We need the events to be in time order here in order to calculate the # delta t between events. It's not obvious exactly how to do this. You # could sort by GTID, but that wraps around. Similarly we can't sort by the # 50 MHz clock because it also wraps around. Finally, I'm hesitant to sort # by the 10 MHz clock since it can be unreliable. # # Update: Phil proposed a clever way to get the events in order using the # GTID: # # > The GTID rollover should be easy to handle because there should never # > be two identical GTID's in a run. So if you order the events by GTID, # > you can assume that events with GTID's that come logically before the # > first GTID in the run must have occurred after the other events. # # Therefore, we can just add 0x1000000 to all GTIDs before the first GTID # in the event and sort on that. We get the first GTID from the RHDR bank. ev['gtid_sort'] = ev['gtid'].copy() ev = ev.groupby('run',as_index=False).apply(gtid_sort,first_gtid=first_gtid).reset_index(level=0,drop=True) ev = ev.sort_values(by=['run','gtid_sort'],kind='mergesort') for run, ev_run in ev.groupby('run'): # Warn about 50 MHz clock jumps since they could indicate that the # events aren't in order. dt = np.diff(ev_run.gtr) if np.count_nonzero((np.abs(dt) > 1e9) & (dt > -0x7ffffffffff*20.0/2)): print_warning("Warning: %i 50 MHz clock jumps in run %i. Are the events in order?" % \ (np.count_nonzero((np.abs(dt) > 1e9) & (dt > -0x7ffffffffff*20.0/2)),run)) # unwrap the 50 MHz clock within each run ev.gtr = ev.groupby(['run'],as_index=False)['gtr'].transform(unwrap_50_mhz_clock) for run, ev_run in ev.groupby('run'): # Warn about GTID jumps since we could be missing a potential flasher # and/or breakdown, and we need all the events in order to do a # retrigger cut if np.count_nonzero(np.diff(ev_run.gtid) != 1): print_warning("Warning: %i GTID jumps in run %i" % (np.count_nonzero(np.diff(ev_run.gtid) != 1),run)) # calculate the time difference between each event and the previous event # so we can tag retrigger events ev['dt'] = ev.groupby(['run'],as_index=False)['gtr'].transform(lambda x: np.concatenate(([1e9],np.diff(x.values)))) # This is a bit of a hack. It appears that many times the fit will # actually do much better by including a very low energy electron or # muon. I believe the reason for this is that of course my likelihood # function is not perfect (for example, I don't include the correct # angular distribution for Rayleigh scattered light), and so the fitter # often wants to add a very low energy electron or muon to fix things. # # Ideally I would fix the likelihood function, but for now we just # discard any fit results which have a very low energy electron or # muon. # # FIXME: Test this since query() is new to pandas fits = fits.query('not (n > 1 and ((id1 == 20 and energy1 < 20) or (id2 == 20 and energy2 < 20) or (id3 == 20 and energy3 < 20)))') fits = fits.query('not (n > 1 and ((id2 == 22 and energy1 < 200) or (id2 == 22 and energy2 < 200) or (id3 == 22 and energy3 < 200)))') # Calculate the approximate Ockham factor. # See Chapter 20 in "Probability Theory: The Logic of Science" by Jaynes # # Note: This is a really approximate form by assuming that the shape of # the likelihood space is equal to the average uncertainty in the # different parameters. fits['w'] = fits['n']*np.log(0.1*0.001) + np.log(fits['energy1']) + fits['n']*np.log(1e-4/(4*np.pi)) fits['w'] -= fits['n']*100 # Note: we index on the left hand site with loc to avoid a copy error # # See https://www.dataquest.io/blog/settingwithcopywarning/ fits.loc[fits['n'] > 1, 'w'] += np.log(fits[fits['n'] > 1]['energy2']) fits.loc[fits['n'] > 2, 'w'] += np.log(fits[fits['n'] > 2]['energy3']) fits['fmin'] = fits['fmin'] - fits['w'] fits['ke'] = fits['energy1'] fits['id'] = fits['id1'] fits.loc[fits['n'] == 2, 'id'] = fits['id1']*100 + fits['id2'] fits.loc[fits['n'] == 3, 'id'] = fits['id1']*10000 + fits['id2']*100 + fits['id3'] fits['theta'] = fits['theta1'] print("number of events = %i" % len(ev)) # Now, select prompt events. # # We define a prompt event here as any event with an NHIT > 100 and whose # previous > 100 nhit event was more than 250 ms ago # # Note: It's important we do this *before* applying the data cleaning cuts # since otherwise we may have a prompt event identified only after the # cuts. # # For example, suppose there was a breakdown and for whatever reason # the *second* event after the breakdown didn't get tagged correctly. If we # apply the data cleaning cuts first and then tag prompt events then this # event will get tagged as a prompt event. ev = ev.groupby('run',as_index=False).apply(prompt_event).reset_index(level=0,drop=True) print("number of events after prompt nhit cut = %i" % np.count_nonzero(ev.prompt)) # flasher follower cut ev = ev.groupby('run',as_index=False).apply(flasher_follower_cut).reset_index(level=0,drop=True) # breakdown follower cut ev = ev.groupby('run',as_index=False).apply(breakdown_follower_cut).reset_index(level=0,drop=True) # retrigger cut ev = ev.groupby('run',as_index=False).apply(retrigger_cut).reset_index(level=0,drop=True) ev = ev[ev.prompt] ev.set_index(['run','gtid']) ev = pd.merge(fits,ev,how='inner',on=['run','gtid']) ev_single_particle = ev[(ev.id2 == 0) & (ev.id3 == 0)] ev_single_particle = ev_single_particle.sort_values('fmin').groupby(['run','gtid']).nth(0) ev = ev.sort_values('fmin').groupby(['run','gtid']).nth(0) ev['psi'] /= ev.nhit_cal ev['cos_theta'] = np.cos(ev_single_particle['theta1']) ev['r'] = np.sqrt(ev.x**2 + ev.y**2 + ev.z**2) ev['udotr'] = np.sin(ev_single_particle.theta1)*np.cos(ev_single_particle.phi1)*ev_single_particle.x + \ np.sin(ev_single_particle.theta1)*np.sin(ev_single_particle.phi1)*ev_single_particle.y + \ np.cos(ev_single_particle.theta1)*ev_single_particle.z ev['udotr'] /= ev.r # figure out bins for high level variables ev = radius_cut(ev) ev = psi_cut(ev) ev = cos_theta_cut(ev) ev = z_cut(ev) ev = udotr_cut(ev) ev['noise'] = ev.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_ITC | DC_ESUM) != 0 ev['neck'] = ((ev.dc & DC_NECK) != 0) & ~ev.noise ev['flasher'] = ((ev.dc & DC_FLASHER) != 0) & ~(ev.noise | ev.neck) & (ev.nhit < 1000) ev['breakdown'] = ((ev.dc & (DC_FLASHER | DC_BREAKDOWN)) != 0) & ~(ev.noise | ev.neck) & (ev.nhit >= 1000) ev['muon'] = ((ev.dc & DC_MUON) != 0) & ~(ev.noise | ev.neck | ev.flasher | ev.breakdown) ev['signal'] = ~(ev.noise | ev.neck | ev.flasher | ev.breakdown | ev.muon) data = {} for bg in ['signal','muon','noise','neck','flasher','breakdown']: data[bg] = np.zeros((2,2,2,2),dtype=int) for _, row in ev[ev[bg]].iterrows(): data[bg][row.radius_cut][row.psi_cut][row.z_cut][row.udotr_cut] += 1 # FIXME: Estimate for now, needs to come from MC sacrifice = {bg: 0.0 for bg in ['muon','noise','neck','flasher','breakdown']} sacrifice['signal'] = np.zeros((len(np.unique(ev.radius_cut)),len(np.unique(ev.psi_cut)),len(np.unique(ev.cos_theta_cut)),len(np.unique(ev.z_cut))),dtype=int) p_r_signal = np.array([0.9,0.1]) p_psi_signal = np.array([1.0,0.0]) p_z_signal = np.array([0.5,0.5]) p_udotr_signal = np.array([0.25,0.75]) sacrifice['signal'] = p_r_signal[:,np.newaxis,np.newaxis,np.newaxis]*p_psi_signal[:,np.newaxis,np.newaxis]*p_z_signal[:,np.newaxis]*p_udotr_signal constraints = [flasher_r_udotr, breakdown_r_udotr,muon_r_psi_z_udotr,neck_r_z_udotr,noise_z_udotr] nll = make_nll(data,sacrifice,constraints) x0 = [] for bg in ['signal','muon','noise','neck','flasher','breakdown']: x0.append(data[bg].sum()) # contamination x0 += [0.99]*5 if data['muon'].sum() > 0: # P(r,psi,z,udotr|muon) x0 += [data['muon'][0,0,0,0].sum()/data['muon'].sum()] x0 += [data['muon'][0,0,0,1].sum()/data['muon'].sum()] x0 += [data['muon'][0,0,1,0].sum()/data['muon'].sum()] x0 += [data['muon'][0,0,1,1].sum()/data['muon'].sum()] x0 += [data['muon'][0,1,0,0].sum()/data['muon'].sum()] x0 += [data['muon'][0,1,0,1].sum()/data['muon'].sum()] x0 += [data['muon'][0,1,1,0].sum()/data['muon'].sum()] x0 += [data['muon'][0,1,1,1].sum()/data['muon'].sum()] x0 += [data['muon'][1,0,0,0].sum()/data['muon'].sum()] x0 += [data['muon'][1,0,0,1].sum()/data['muon'].sum()] x0 += [data['muon'][1,0,1,0].sum()/data['muon'].sum()] x0 += [data['muon'][1,0,1,1].sum()/data['muon'].sum()] x0 += [data['muon'][1,1,0,0].sum()/data['muon'].sum()] x0 += [data['muon'][1,1,0,1].sum()/data['muon'].sum()] x0 += [data['muon'][1,1,1,0].sum()/data['muon'].sum()] else: x0 += [0.1]*15 if data['noise'].sum() > 0: # P(r|noise) x0 += [data['noise'][0].sum()/data['noise'].sum()] # P(psi|noise) x0 += [data['noise'][:,0].sum()/data['noise'].sum()] # P(z,udotr|noise) x0 += [data['noise'][:,:,0,0].sum()/data['noise'].sum()] x0 += [data['noise'][:,:,0,1].sum()/data['noise'].sum()] x0 += [data['noise'][:,:,1,0].sum()/data['noise'].sum()] else: x0 += [0.1]*5 if data['neck'].sum() > 0: # P(r,z,udotr|neck) x0 += [data['neck'][0,:,0,0].sum()/data['neck'].sum()] x0 += [data['neck'][0,:,0,1].sum()/data['neck'].sum()] x0 += [data['neck'][0,:,1,0].sum()/data['neck'].sum()] x0 += [data['neck'][0,:,1,1].sum()/data['neck'].sum()] x0 += [data['neck'][1,:,0,0].sum()/data['neck'].sum()] x0 += [data['neck'][1,:,0,1].sum()/data['neck'].sum()] x0 += [data['neck'][1,:,1,0].sum()/data['neck'].sum()] # P(psi|neck) x0 += [data['neck'][:,0].sum()/data['neck'].sum()] else: x0 += [0.1]*8 if data['flasher'].sum() > 0: # P(r,udotr|flasher) x0 += [data['flasher'][0,:,:,0].sum()/data['flasher'].sum()] x0 += [data['flasher'][0,:,:,1].sum()/data['flasher'].sum()] x0 += [data['flasher'][1,:,:,0].sum()/data['flasher'].sum()] # P(psi|flasher) x0 += [data['flasher'][:,0].sum()/data['flasher'].sum()] # P(z|flasher) x0 += [data['flasher'][:,:,0].sum()/data['flasher'].sum()] else: x0 += [0.1]*5 if data['breakdown'].sum() > 0: # P(r,udotr|breakdown) x0 += [data['breakdown'][0,:,:,0].sum()/data['breakdown'].sum()] x0 += [data['breakdown'][0,:,:,1].sum()/data['breakdown'].sum()] x0 += [data['breakdown'][1,:,:,0].sum()/data['breakdown'].sum()] # P(psi|breakdown) x0 += [data['breakdown'][:,0].sum()/data['breakdown'].sum()] # P(z|breakdown) x0 += [data['breakdown'][:,:,0].sum()/data['breakdown'].sum()] else: x0 += [0.1]*5 # P(neck|muon) x0 += [EPSILON] x0 = np.array(x0) # Use the COBYLA algorithm here because it is the only derivative free # minimization routine which honors inequality constraints # Edit: SBPLX seems to work better opt = nlopt.opt(nlopt.LN_SBPLX, len(x0)) opt.set_min_objective(nll) # set lower bounds to 1e-10 to prevent nans if we predict something should # be 0 but observe an event. low = np.ones_like(x0)*EPSILON high = np.array([1e9]*6 + [1-EPSILON]*(len(x0)-6)) x0[x0 < low] = low[x0 < low] x0[x0 > high] = high[x0 > high] opt.set_lower_bounds(low) opt.set_upper_bounds(high) opt.set_ftol_abs(1e-10) opt.set_initial_step([1]*6 + [0.01]*(len(x0)-6)) #for constraint in constraints: #opt.add_inequality_constraint(constraint,0) xopt = opt.optimize(x0) nll_xopt = nll(xopt) print("nll(xopt) = ", nll(xopt)) while True: xopt = opt.optimize(xopt) if not nll(xopt) < nll_xopt - 1e-10: break nll_xopt = nll(xopt) print("nll(xopt) = ", nll(xopt)) #print("n = ", opt.get_numevals()) stepsizes = estimate_errors(nll,xopt,constraints) with printoptions(precision=3, suppress=True): print("Errors: ", stepsizes) #samples = metropolis_hastings(nll,xopt,stepsizes,100000) #print("nll(xopt) = %.2g" % nll(xopt)) pos = np.empty((10, len(x0)),dtype=np.double) for i in range(pos.shape[0]): pos[i] = xopt + np.random.randn(len(x0))*stepsizes pos[i,:6] = np.clip(pos[i,:6],EPSILON,1e9) pos[i,6:] = np.clip(pos[i,6:],EPSILON,1-EPSILON) for constraint in constraints: if constraint(pos[i]) >= 0: pos[i] = constraint.renormalize_no_fix(pos[i]) nwalkers, ndim = pos.shape proposal = get_proposal_func(stepsizes*0.1,low,high) sampler = emcee.EnsembleSampler(nwalkers, ndim, lambda x, grad, fill_value: -nll(x,grad,fill_value), moves=emcee.moves.MHMove(proposal),args=[None,np.inf]) with np.errstate(invalid='ignore'): sampler.run_mcmc(pos, 100000) print("Mean acceptance fraction: {0:.3f}".format(np.mean(sampler.acceptance_fraction))) try: print("autocorrelation time: ", sampler.get_autocorr_time(quiet=True)) except Exception as e: print(e) if args.save: # default \textwidth for a fullpage article in Latex is 16.50764 cm. # You can figure this out by compiling the following TeX document: # # \documentclass{article} # \usepackage{fullpage} # \usepackage{layouts} # \begin{document} # textwidth in cm: \printinunitsof{cm}\prntlen{\textwidth} # \end{document} width = 16.50764 width /= 2.54 # cm -> inches # According to this page: # http://www-personal.umich.edu/~jpboyd/eng403_chap2_tuftegospel.pdf, # Tufte suggests an aspect ratio of 1.5 - 1.6. height = width/1.5 FIGSIZE = (width,height) import matplotlib.pyplot as plt font = {'family':'serif', 'serif': ['computer modern roman']} plt.rc('font',**font) plt.rc('text', usetex=True) else: # on retina screens, the default plots are way too small # by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1 # Qt5 will scale everything using the dpi in ~/.Xresources import matplotlib matplotlib.use("Qt5Agg") import matplotlib.pyplot as plt # Default figure size. Currently set to my monitor width and height so that # things are properly formatted FIGSIZE = (13.78,7.48) # Make the defalt font bigger plt.rc('font', size=22) # Plot walker positions as a function of step number for the expected # number of events fig, axes = plt.subplots(6, figsize=FIGSIZE, num=1, sharex=True) samples = sampler.get_chain() labels = ["Signal","Muon","Noise","Neck","Flasher","Breakdown"] for i, bg in enumerate(['signal','muon','noise','neck','flasher','breakdown']): ax = axes[i] ax.plot(samples[:,:,i], "k", alpha=0.3) ax.set_xlim(0, len(samples)) ax.set_ylabel(labels[i], rotation=0) ax.yaxis.set_label_coords(-0.1, 0.5) despine(ax=ax,trim=True) plt.subplots_adjust(left=0.2) fig.tight_layout() # Plot walker positions as a function of step number for the background cut # efficiencies fig, axes = plt.subplots(5, figsize=FIGSIZE, num=2, sharex=True) samples = sampler.get_chain() tag_labels = ['M','N','Ne','F','B'] for i, bg in enumerate(['muon','noise','neck','flasher','breakdown']): ax = axes[i] ax.plot(samples[:,:,6+i], "k", alpha=0.3) ax.set_xlim(0, len(samples)) ax.set_ylabel(r"$P(\mathrm{%s}\mid\mathrm{%s})$" % (tag_labels[i],bg), rotation=0) ax.yaxis.set_label_coords(-0.1, 0.5) despine(ax=ax,trim=True) plt.subplots_adjust(left=0.2) fig.tight_layout() samples = sampler.chain.reshape((-1,len(x0))) plt.figure(3, figsize=FIGSIZE) for i, bg in enumerate(['signal','muon','noise','neck','flasher','breakdown']): ax = plt.subplot(3,2,i+1) plt.hist(samples[:,i],bins=100,histtype='step') plt.title(bg.capitalize()) despine(ax=ax,left=True,trim=True) ax.get_yaxis().set_visible(False) plt.legend() plt.tight_layout() plt.figure(4, figsize=FIGSIZE) for i, bg in enumerate(['muon','noise','neck','flasher','breakdown']): ax = plt.subplot(3,2,i+1) plt.hist(samples[:,6+i],bins=100,histtype='step') plt.title(bg.capitalize()) despine(ax=ax,left=True,trim=True) ax.get_yaxis().set_visible(False) plt.legend() plt.tight_layout() (mu_signal, mu_muon, mu_noise, mu_neck, mu_flasher, mu_breakdown, contamination_muon, contamination_noise, contamination_neck, contamination_flasher, contamination_breakdown, p_r_psi_z_udotr_muon_lolololo, # 11 p_r_psi_z_udotr_muon_lololohi, p_r_psi_z_udotr_muon_lolohilo, p_r_psi_z_udotr_muon_lolohihi, p_r_psi_z_udotr_muon_lohilolo, p_r_psi_z_udotr_muon_lohilohi, p_r_psi_z_udotr_muon_lohihilo, p_r_psi_z_udotr_muon_lohihihi, p_r_psi_z_udotr_muon_hilololo, p_r_psi_z_udotr_muon_hilolohi, p_r_psi_z_udotr_muon_hilohilo, p_r_psi_z_udotr_muon_hilohihi, p_r_psi_z_udotr_muon_hihilolo, p_r_psi_z_udotr_muon_hihilohi, p_r_psi_z_udotr_muon_hihihilo, p_r_noise_lo, p_psi_noise_lo, # 26, 27 p_z_udotr_noise_lolo, # 28 p_z_udotr_noise_lohi, p_z_udotr_noise_hilo, p_r_z_udotr_neck_lololo, # 31 p_r_z_udotr_neck_lolohi, p_r_z_udotr_neck_lohilo, p_r_z_udotr_neck_lohihi, p_r_z_udotr_neck_hilolo, p_r_z_udotr_neck_hilohi, p_r_z_udotr_neck_hihilo, p_psi_neck_lo, # 38 p_r_udotr_flasher_lolo, p_r_udotr_flasher_lohi, p_r_udotr_flasher_hilo, # 39, ..., 41 p_psi_flasher_lo, p_z_flasher_lo, p_r_udotr_breakdown_lolo, p_r_udotr_breakdown_lohi, p_r_udotr_breakdown_hilo, # 44, ..., 46 p_psi_breakdown_lo, p_z_breakdown_lo, p_neck_given_muon) = samples.T p_r_muon_lo = p_r_psi_z_udotr_muon_lolololo + \ p_r_psi_z_udotr_muon_lololohi + \ p_r_psi_z_udotr_muon_lolohilo + \ p_r_psi_z_udotr_muon_lolohihi + \ p_r_psi_z_udotr_muon_lohilolo + \ p_r_psi_z_udotr_muon_lohilohi + \ p_r_psi_z_udotr_muon_lohihilo + \ p_r_psi_z_udotr_muon_lohihihi p_psi_muon_lo = p_r_psi_z_udotr_muon_lolololo + \ p_r_psi_z_udotr_muon_lololohi + \ p_r_psi_z_udotr_muon_lolohilo + \ p_r_psi_z_udotr_muon_lolohihi + \ p_r_psi_z_udotr_muon_hilololo + \ p_r_psi_z_udotr_muon_hilolohi + \ p_r_psi_z_udotr_muon_hilohilo + \ p_r_psi_z_udotr_muon_hilohihi p_r = [sacrifice['signal'][0].sum(), p_r_muon_lo, p_r_noise_lo, \ p_r_z_udotr_neck_lololo + p_r_z_udotr_neck_lolohi + p_r_z_udotr_neck_lohilo + p_r_z_udotr_neck_lohihi, \ p_r_udotr_flasher_lolo + p_r_udotr_flasher_lohi, \ p_r_udotr_breakdown_lolo + p_r_udotr_breakdown_lohi] p_psi = [sacrifice['signal'][:,0].sum(), \ p_psi_muon_lo, \ p_psi_noise_lo, \ p_psi_neck_lo, \ p_psi_flasher_lo, \ p_psi_breakdown_lo] ylim_max = 0 fig = plt.figure(5, figsize=FIGSIZE) axes = [] for i, bg in enumerate(['signal','muon','noise','neck','flasher','breakdown']): axes.append(plt.subplot(3,2,i+1)) if i == 0: plt.hist(samples[:,i],bins=100,histtype='step',label="After DC cuts") plt.hist(samples[:,i]*p_r[i],bins=100,histtype='step',linestyle=':',label="+ radius cut") plt.hist(samples[:,i]*p_r[i]*p_psi[i],bins=100,histtype='step',linestyle='--',label=r"+ $\psi$ cut") else: plt.hist(samples[:,i]*(1-samples[:,5+i]),bins=100,histtype='step') plt.hist(samples[:,i]*(1-samples[:,5+i])*p_r[i],bins=100,histtype='step',linestyle=':') plt.hist(samples[:,i]*(1-samples[:,5+i])*p_r[i]*p_psi[i],bins=100,histtype='step',linestyle='--') plt.title(bg.capitalize()) xlim_max = max(ax.get_xlim()[1] for ax in axes) for ax in axes: ax.set_xlim((0,xlim_max)) despine(ax=ax,left=True,trim=True) ax.get_yaxis().set_visible(False) # Create new legend handles but use the colors from the existing ones handles, labels = axes[0].get_legend_handles_labels() new_handles = [Line2D([], [], c=h.get_edgecolor()) for h in handles] fig.legend(new_handles,labels,loc='upper right') plt.legend() plt.tight_layout() if args.save: plt.figure(1) plt.savefig("dc_walker_pos_num_events.pdf") plt.savefig("dc_walker_pos_num_events.eps") plt.figure(2) plt.savefig("dc_walker_pos_cut_eff.pdf") plt.savefig("dc_walker_pos_cut_eff.eps") plt.figure(3) plt.savefig("dc_num_events.pdf") plt.savefig("dc_num_events.eps") plt.figure(4) plt.savefig("dc_cut_eff.pdf") plt.savefig("dc_cut_eff.eps") plt.figure(5) plt.savefig("dc_num_events_after_cuts.pdf") plt.savefig("dc_num_events_after_cuts.eps") plt.figure(3) plt.suptitle("Expected number of events") plt.figure(4) plt.suptitle("Probability of correctly tagging background") plt.figure(5) plt.suptitle("Expected number of Backgrounds after cuts") plt.show()