#!/usr/bin/env python # Copyright (c) 2019, Anthony Latorre # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # You should have received a copy of the GNU General Public License along with # this program. If not, see . """ Script to do final null hypothesis test that the events in the 20 MeV - 10 GeV range are consistent with atmospheric neutrino events. To run it just run: $ ./chi2 [list of data fit results] --mc [list of atmospheric MC files] --muon-mc [list of muon MC files] --steps [steps] After running you will get a plot showing the best fit results of the MC and data along with p-values for each of the possible particle combinations (single electron, single muon, double electron, etc.). """ from __future__ import print_function, division import numpy as np from scipy.stats import iqr, poisson from matplotlib.lines import Line2D from scipy.stats import iqr, norm, beta from scipy.special import spence from itertools import izip_longest from sddm.stats import * # Uncertainty on the energy scale # FIXME: These are just placeholders! Should get real number from stopping # muons. ENERGY_SCALE_MEAN = {'e': 1.0, 'u': 1.0, 'eu': 1.0} ENERGY_SCALE_UNCERTAINTY = {'e':0.1, 'u': 0.1, 'eu': 0.1} ENERGY_RESOLUTION_MEAN = {'e': 0.0, 'u': 0.0, 'eu': 0.0} ENERGY_RESOLUTION_UNCERTAINTY = {'e':0.1, 'u': 0.1, 'eu': 0.1} # Absolute tolerance for the minimizer. # Since we're minimizing the negative log likelihood, we really only care about # the value of the minimum to within ~0.05 (10% of the one sigma shift). # However, I have noticed before that setting a higher tolerance can sometimes # cause the fit to get stuck in a local minima, so we set it here to a very # small value. FTOL_ABS = 1e-10 particle_id = {20: 'e', 22: r'\mu'} def plot_hist2(hists, bins, color=None): for id in (20,22,2020,2022,2222): if id == 20: plt.subplot(2,3,1) elif id == 22: plt.subplot(2,3,2) elif id == 2020: plt.subplot(2,3,4) elif id == 2022: plt.subplot(2,3,5) elif id == 2222: plt.subplot(2,3,6) bincenters = (bins[1:] + bins[:-1])/2 plt.hist(bincenters, bins=bins, histtype='step', weights=hists[id],color=color) plt.gca().set_xscale("log") plt.xlabel("Energy (MeV)") plt.title('$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)]) + '$') if len(df): plt.tight_layout() def get_mc_hists(data,x,bins,apply_norm=False): """ Returns the expected Monte Carlo histograms for the atmospheric neutrino background. Args: - data: pandas dataframe of the Monte Carlo events - x: fit parameters - bins: histogram bins - apply_norm: boolean value representing whether we should apply the atmospheric neutrino scale parameter This function does two basic things: 1. apply the energy bias and resolution corrections 2. histogram the results Normally to apply the energy resolution correction we should smear out each MC event by the resolution and then bin the results. But since there are thousands and thousands of MC events this takes way too long. Therefore, we use a trick. We first bin the MC events on a much finer binning scale than the final bins. We then smear this histogram and then bin the results in the final bins. Returns a dictionary mapping particle id combo -> histogram. """ ke_dict = {} for id in (20,22,2020,2022,2222): ke_dict[id] = data[data.id == id].ke.values return get_mc_hists_fast(ke_dict,x,bins,apply_norm) def get_mc_hists_fast(ke_dict,x,bins,apply_norm=False): """ Same as get_mc_hists() but the first argument is a dictionary mapping particle id -> kinetic energy array. This is much faster than selecting the events from the dataframe every time. """ mc_hists = {} # FIXME: May need to increase number of bins here bins2 = np.logspace(np.log10(10),np.log10(20e3),100) bincenters2 = (bins2[1:] + bins2[:-1])/2 for id in (20,22,2020,2022,2222): ke = ke_dict[id] if id in (20,2020): ke = ke*x[1] scale = bincenters2*max(EPSILON,x[2]) elif id in (22,2222): ke = ke*x[3] scale = bincenters2*max(EPSILON,x[4]) elif id == 2022: ke = ke*x[5] scale = bincenters2*max(EPSILON,x[6]) hist = np.histogram(ke,bins=bins2)[0] cdf = norm.cdf(bins[:,np.newaxis],bincenters2,scale)*hist mc_hists[id] = np.sum(cdf[1:] - cdf[:-1],axis=-1) if apply_norm: mc_hists[id] *= x[0] return mc_hists def get_data_hists(data,bins,scale=1.0): """ Returns the data histogrammed into `bins`. """ data_hists = {} for id in (20,22,2020,2022,2222): df_id = data[data.id == id] data_hists[id] = np.histogram(df_id.ke.values,bins=bins)[0]*scale return data_hists # Likelihood Fit Parameters # 0 - Atmospheric Neutrino Flux Scale # 1 - Electron energy bias # 2 - Electron energy resolution # 3 - Muon energy bias # 4 - Muon energy resolution # 5 - Electron + Muon energy bias # 6 - Electron + Muon energy resolution # 7 - External Muon scale FIT_PARS = [ 'Atmospheric Neutrino Flux Scale', 'Electron energy bias', 'Electron energy resolution', 'Muon energy bias', 'Muon energy resolution', 'Electron + Muon energy bias', 'Electron + Muon energy resolution', 'External Muon scale'] def make_nll(data, muons, mc, bins): data_hists = get_data_hists(data,bins) ke_dict = {} for id in (20,22,2020,2022,2222): ke_dict[id] = mc[mc.id == id].ke.values ke_dict_muon = {} for id in (20,22,2020,2022,2222): ke_dict_muon[id] = muons[muons.id == id].ke.values def nll(x, grad=None): if any(x[i] < 0 for i in range(len(x))): return np.inf # Get the Monte Carlo histograms. We need to do this within the # likelihood function since several of the parameters like the energy # bias and resolution affect the histograms. # # Note: I really should be applying the bias term to the data instead # of the Monte Carlo. The reason being that the reconstruction was all # tuned based on the data from the Monte Carlo. For example, the single # PE charge distribution is taken from the Monte Carlo. Therefore, if # there is some difference in bias between data and Monte Carlo, we # should apply it to the data. However, the reason I apply it to the # Monte Carlo instead is because applying an energy bias correction to # an analysis in which we're using histograms is not really a good # idea. If the energy scale parameter changes by a very small amount # and causes a single event to cross a bin boundary you will see a # discrete jump in the likelihood. This isn't good for minimizers # (although it may be ok with the MCMC depending on the size of the # jump). To reduce this issue, I apply the energy bias correction to # the Monte Carlo, and since there are almost 100 times more events in # the Monte Carlo than in data, the issue is much smaller. # # All that being said, this doesn't completely get rid of the issue, # but I do two things that should make it OK: # # 1. I use the SBPLX minimizer instead of COBYLA which should have a # better chance of jumping over small discontinuities. # # 2. I ultimately run an MCMC and so if we get stuck somewhere close to # the minimum, the MCMC results should correctly deal with any small # discontinuities. # # Also, it's critical that I first adjust the data energy by whatever # amount I find with the stopping muons and Michel distributions. mc_hists = get_mc_hists_fast(ke_dict,x,bins,apply_norm=True) muon_hists = get_mc_hists_fast(ke_dict_muon,x,bins,apply_norm=False) # Calculate the negative log of the likelihood of observing the data # given the fit parameters nll = 0 for id in data_hists: oi = data_hists[id] ei = mc_hists[id] + muon_hists[id]*x[7] + EPSILON N = ei.sum() nll -= -N - np.sum(gammaln(oi+1)) + np.sum(oi*np.log(ei)) # Add the priors nll -= norm.logpdf(x[1],ENERGY_SCALE_MEAN['e'],ENERGY_SCALE_UNCERTAINTY['e']) nll -= norm.logpdf(x[3],ENERGY_SCALE_MEAN['u'],ENERGY_SCALE_UNCERTAINTY['u']) nll -= norm.logpdf(x[5],ENERGY_SCALE_MEAN['eu'],ENERGY_SCALE_UNCERTAINTY['eu']) nll -= norm.logpdf(x[2],ENERGY_RESOLUTION_MEAN['e'],ENERGY_RESOLUTION_UNCERTAINTY['e']) nll -= norm.logpdf(x[4],ENERGY_RESOLUTION_MEAN['u'],ENERGY_RESOLUTION_UNCERTAINTY['u']) nll -= norm.logpdf(x[6],ENERGY_RESOLUTION_MEAN['eu'],ENERGY_RESOLUTION_UNCERTAINTY['eu']) # Print the result print("nll = %.2f" % nll) return nll return nll def get_mc_hists_posterior(ke_dict,muon_hists,data_hists,x,bins): """ Returns the posterior on the Monte Carlo histograms. Basically this function just histograms the Monte Carlo data. However, there is one extra thing it does. In general when doing a fit, the Monte Carlo histograms have some uncertainty since you can never simulate an infinite number of statistics. I don't think I've ever really seen anyone properly treat this. Since the uncertainty on the central value in each bin is just given by the Dirichlet distribution, we treat the problem of finding the best value of the posterior as a problem in which you're prior is equal to the expected number of events from the Monte Carlo, and then you actually see the data. Since the likelihood on the true mean in each bin is a multinomial, the posterior is also a dirichlet where the alpha paramters are given by a sum of the prior and observed counts. All that is a long way of saying we calculate the posterior as the sum of the Monte Carlo events (unscaled) and the observed events. In the limit of infinite statistics, this is just equal to the Monte Carlo predicted histogram, but deals with the fact that we don't have infinite statistics, and so a single outlier event isn't necessarily a problem with the model. Returns a dictionary mapping particle id combo -> histogram. """ mc_hists = get_mc_hists_fast(ke_dict,x,bins) for id in (20,22,2020,2022,2222): mc_hists[id] = get_mc_hist_posterior(mc_hists[id],data_hists[id],norm=x[0]) # FIXME: does the orering of when we add the muons matter here? mc_hists[id] += muon_hists[id]*x[7] return mc_hists def get_multinomial_prob(data, data_muon, data_mc, id, x_samples, bins, percentile=99.0, size=10000): """ Returns the p-value that the histogram of the data is drawn from the MC histogram. The p-value is calculated by first sampling the posterior of the fit parameters `size` times. For each iteration we calculate a p-value. We then return the `percentile` percentile of all the p-values. This approach is similar to both the supremum and posterior predictive methods of calculating a p-value. For more information on different methods of calculating p-values see https://cds.cern.ch/record/1099967/files/p23.pdf. Arguments: data: 1D array of KE values data_mc: 1D array of MC KE values x_samples: MCMC samples of the floated parameters in the fit bins: bins used to bin the mc histogram size: number of values to compute """ data_hists = get_data_hists(data,bins) muon_hists = get_data_hists(data_muon,bins) ke_dict = {} for _id in (20,22,2020,2022,2222): ke_dict[_id] = data_mc[data_mc.id == _id].ke.values ps = [] for i in range(size): x = x_samples[np.random.randint(x_samples.shape[0])] mc = get_mc_hists_posterior(ke_dict,muon_hists,data_hists,x,bins)[id] N = mc.sum() # Fix a bug in scipy(). See https://github.com/scipy/scipy/issues/8235 (I think). mc = mc + 1e-10 p = mc/mc.sum() chi2_data = nllr(data_hists[id],mc) # To draw the multinomial samples we first draw the expected number of # events from a Poisson distribution and then loop over the counts and # unique values. The reason we do this is that you can't call # multinomial.rvs with a multidimensional `n` array, and looping over every # single entry takes forever ns = np.random.poisson(N,size=1000) samples = [] for n, count in zip(*np.unique(ns,return_counts=True)): samples.append(multinomial.rvs(n,p,size=count)) samples = np.concatenate(samples) # Calculate the negative log likelihood ratio for the data simulated under # the null hypothesis chi2_samples = nllr(samples,mc) ps.append(np.count_nonzero(chi2_samples >= chi2_data)/len(chi2_samples)) return np.percentile(ps,percentile) def get_prob(data,muon,mc,samples,bins,size): prob = {} for id in (20,22,2020,2022,2222): prob[id] = get_multinomial_prob(data,muon,mc,id,samples,bins,size=size) print(id, prob[id]) return prob def do_fit(data,muon,data_mc,bins,steps): """ Run the fit and return the minimum along with samples from running an MCMC starting near the minimum. Args: - data: pandas dataframe representing the data to fit - muon: pandas dataframe representing the expected background from external muons - data_mc: pandas dataframe representing the expected background from atmospheric neutrino events - bins: an array of bins to use for the fit - steps: the number of MCMC steps to run Returns a tuple (xopt, samples) where samples is an array of shape (steps, number of parameters). """ nll = make_nll(data,muon,data_mc,bins) x0 = np.array([1.0,1.0,EPSILON,1.0,EPSILON,1.0,EPSILON,EPSILON]) opt = nlopt.opt(nlopt.LN_SBPLX, len(x0)) opt.set_min_objective(nll) low = np.array([EPSILON]*len(x0)) high = np.array([10]*len(x0)) opt.set_lower_bounds(low) opt.set_upper_bounds(high) opt.set_ftol_abs(FTOL_ABS) opt.set_initial_step([0.01]*len(x0)) xopt = opt.optimize(x0) print("xopt = ", xopt) nll_xopt = nll(xopt) print("nll(xopt) = ", nll(xopt)) pos = np.empty((20, len(x0)),dtype=np.double) for i in range(pos.shape[0]): pos[i] = xopt + np.random.randn(len(x0))*xopt*0.1 pos[i,:] = np.clip(pos[i,:],low,high) nwalkers, ndim = pos.shape sampler = emcee.EnsembleSampler(nwalkers, ndim, lambda x: -nll(x)) with np.errstate(invalid='ignore'): sampler.run_mcmc(pos, steps) print("Mean acceptance fraction: {0:.3f}".format(np.mean(sampler.acceptance_fraction))) try: print("autocorrelation time: ", sampler.get_autocorr_time(quiet=True)) except Exception as e: print(e) samples = sampler.chain.reshape((-1,len(x0))) return xopt, samples if __name__ == '__main__': import argparse import numpy as np import pandas as pd import sys import h5py from sddm.plot_energy import * from sddm.plot import * from sddm import setup_matplotlib import nlopt import emcee parser = argparse.ArgumentParser("plot fit results") parser.add_argument("filenames", nargs='+', help="input files") parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds") parser.add_argument("--mc", nargs='+', required=True, help="atmospheric MC files") parser.add_argument("--muon-mc", nargs='+', required=True, help="muon MC files") parser.add_argument("--nhit-thresh", type=int, default=None, help="nhit threshold to apply to events before processing (should only be used for testing to speed things up)") parser.add_argument("--steps", type=int, default=1000, help="number of steps in the MCMC chain") parser.add_argument("--multinomial-prob-size", type=int, default=10000, help="number of p values to compute") parser.add_argument("--coverage", type=int, default=0, help="plot p value coverage") args = parser.parse_args() setup_matplotlib(args.save) import matplotlib.pyplot as plt # Loop over runs to prevent using too much memory evs = [] rhdr = pd.concat([read_hdf(filename, "rhdr").assign(filename=filename) for filename in args.filenames],ignore_index=True) for run, df in rhdr.groupby('run'): evs.append(get_events(df.filename.values, merge_fits=True, nhit_thresh=args.nhit_thresh)) ev = pd.concat(evs) ev_mc = get_events(args.mc, merge_fits=True, nhit_thresh=args.nhit_thresh) muon_mc = get_events(args.muon_mc, merge_fits=True, nhit_thresh=args.nhit_thresh) # Set all prompt events in the MC to be muons muon_mc.loc[muon_mc.prompt & muon_mc.filename.str.contains("cosmic"),'muon'] = True ev = ev.reset_index() ev_mc = ev_mc.reset_index() muon_mc = muon_mc.reset_index() # 00-orphan cut ev = ev[(ev.gtid & 0xff) != 0] ev_mc = ev_mc[(ev_mc.gtid & 0xff) != 0] muon_mc = muon_mc[(muon_mc.gtid & 0xff) != 0] # remove events 200 microseconds after a muon ev = ev.groupby('run',group_keys=False).apply(muon_follower_cut) # Get rid of events which don't have a successful fit ev = ev[~np.isnan(ev.fmin)] ev_mc = ev_mc[~np.isnan(ev_mc.fmin)] muon_mc = muon_mc[~np.isnan(muon_mc.fmin)] # require (r/r_psup)^3 < 0.9 ev = ev[ev.r_psup < 0.9] ev_mc = ev_mc[ev_mc.r_psup < 0.9] muon_mc = muon_mc[muon_mc.r_psup < 0.9] # require psi < 6 ev = ev[ev.psi < 6] ev_mc = ev_mc[ev_mc.psi < 6] muon_mc = muon_mc[muon_mc.psi < 6] data = ev[ev.signal & ev.prompt & ~ev.atm] data_atm = ev[ev.signal & ev.prompt & ev.atm] # Right now we use the muon Monte Carlo in the fit. If you want to use the # actual data, you can comment the next two lines and then uncomment the # two after that. muon = muon_mc[muon_mc.muon & muon_mc.prompt & ~muon_mc.atm] muon_atm = muon_mc[muon_mc.muon & muon_mc.prompt & muon_mc.atm] #muon = ev[ev.muon & ev.prompt & ~ev.atm] #muon_atm = ev[ev.muon & ev.prompt & ev.atm] data_mc = ev_mc[ev_mc.signal & ev_mc.prompt & ~ev_mc.atm] data_atm_mc = ev_mc[ev_mc.signal & ev_mc.prompt & ev_mc.atm] bins = np.logspace(np.log10(20),np.log10(10e3),21) if args.coverage: p_values = {id: [] for id in (20,22,2020,2022,2222)} p_values_atm = {id: [] for id in (20,22,2020,2022,2222)} ENERGY_RESOLUTION_UNCERTAINTY = {'e':100.0, 'u': 100.0, 'eu': 100.0} scale = 0.01 muon_scale = 0.01 energy_resolution = 0.1 true_values = [scale,1.0,energy_resolution,1.0,energy_resolution,1.0,energy_resolution,muon_scale] assert(len(true_values) == len(FIT_PARS)) pull = [[] for i in range(len(FIT_PARS))] # Set the random seed so we get reproducible results here np.random.seed(0) for i in range(args.coverage): # Calculate expected number of events N = len(data_mc)*scale N_atm = len(data_atm_mc)*scale N_muon = len(muon)*muon_scale N_muon_atm = len(muon_atm)*muon_scale # Calculate observed number of events n = np.random.poisson(N) n_atm = np.random.poisson(N_atm) n_muon = np.random.poisson(N_muon) n_muon_atm = np.random.poisson(N_muon_atm) # Sample data from Monte Carlo data = pd.concat((data_mc.sample(n=n,replace=True), muon.sample(n=n_muon,replace=True))) data_atm = pd.concat((data_atm_mc.sample(n=n_atm,replace=True), muon_atm.sample(n=n_muon_atm,replace=True))) # Smear the energies by the additional energy resolution data.ke += np.random.randn(len(data.ke))*data.ke*energy_resolution data_atm.ke += np.random.randn(len(data_atm.ke))*data_atm.ke*energy_resolution xopt, samples = do_fit(data,muon,data_mc,bins,args.steps) for i in range(len(FIT_PARS)): mean = np.mean(samples[:,i]) std = np.std(samples[:,i]) pull[i].append((mean - true_values[i])/std) prob = get_prob(data,muon,data_mc,samples,bins,size=args.multinomial_prob_size) prob_atm = get_prob(data_atm,muon_atm,data_atm_mc,samples,bins,size=args.multinomial_prob_size) for id in (20,22,2020,2022,2222): p_values[id].append(prob[id]) p_values_atm[id].append(prob_atm[id]) fig = plt.figure() for id in (20,22,2020,2022,2222): if id == 20: plt.subplot(2,3,1) elif id == 22: plt.subplot(2,3,2) elif id == 2020: plt.subplot(2,3,4) elif id == 2022: plt.subplot(2,3,5) elif id == 2222: plt.subplot(2,3,6) plt.hist(p_values[id],bins=np.linspace(0,1,101),histtype='step') plt.title('$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)]) + '$') despine(fig,trim=True) plt.tight_layout() if args.save: fig.savefig("chi2_p_value_coverage_plot.pdf") fig.savefig("chi2_p_value_coverage_plot.eps") else: plt.suptitle("P-value Coverage without Neutron Follower") fig = plt.figure() for id in (20,22,2020,2022,2222): if id == 20: plt.subplot(2,3,1) elif id == 22: plt.subplot(2,3,2) elif id == 2020: plt.subplot(2,3,4) elif id == 2022: plt.subplot(2,3,5) elif id == 2222: plt.subplot(2,3,6) plt.hist(p_values_atm[id],bins=np.linspace(0,1,101),histtype='step') plt.title('$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)]) + '$') despine(fig,trim=True) plt.tight_layout() if args.save: fig.savefig("chi2_p_value_coverage_plot_atm.pdf") fig.savefig("chi2_p_value_coverage_plot_atm.eps") else: plt.suptitle("P-value Coverage with Neutron Follower") # Bins for the pull plots bins = np.linspace(-10,10,101) bincenters = (bins[1:] + bins[:-1])/2 fig = plt.figure() axes = [] for i, name in enumerate(FIT_PARS): axes.append(plt.subplot(3,3,i+1)) plt.hist(pull[i],bins=bins,histtype='step',normed=True) plt.plot(bincenters,norm.pdf(bincenters)) plt.title(name) for ax in axes: ax.set_xlim((-10,10)) despine(ax=ax,left=True,trim=True) ax.get_yaxis().set_visible(False) plt.tight_layout() if args.save: fig.savefig("chi2_pull_plot.pdf") fig.savefig("chi2_pull_plot.eps") else: plt.show() sys.exit(0) xopt, samples = do_fit(data,muon,data_mc,bins,args.steps) prob = get_prob(data,muon,data_mc,samples,bins,size=args.multinomial_prob_size) prob_atm = get_prob(data_atm,muon_atm,data_atm_mc,samples,bins,size=args.multinomial_prob_size) plt.figure() plt.subplot(3,3,1) plt.hist(samples[:,0],bins=100,histtype='step') plt.xlabel("Atmospheric Flux Scale") despine(ax=plt.gca(),left=True,trim=True) plt.gca().get_yaxis().set_visible(False) plt.subplot(3,3,2) plt.hist(samples[:,1],bins=100,histtype='step') plt.xlabel("Electron Energy Scale") despine(ax=plt.gca(),left=True,trim=True) plt.gca().get_yaxis().set_visible(False) plt.subplot(3,3,3) plt.hist(samples[:,2],bins=100,histtype='step') plt.xlabel("Electron Energy Resolution") despine(ax=plt.gca(),left=True,trim=True) plt.gca().get_yaxis().set_visible(False) plt.subplot(3,3,4) plt.hist(samples[:,3],bins=100,histtype='step') plt.xlabel("Muon Energy Scale") despine(ax=plt.gca(),left=True,trim=True) plt.gca().get_yaxis().set_visible(False) plt.subplot(3,3,5) plt.hist(samples[:,4],bins=100,histtype='step') plt.xlabel("Muon Energy Resolution") despine(ax=plt.gca(),left=True,trim=True) plt.gca().get_yaxis().set_visible(False) plt.subplot(3,3,6) plt.hist(samples[:,5],bins=100,histtype='step') plt.xlabel("Electron + Muon Energy Scale") despine(ax=plt.gca(),left=True,trim=True) plt.gca().get_yaxis().set_visible(False) plt.subplot(3,3,7) plt.hist(samples[:,6],bins=100,histtype='step') plt.xlabel("Electron + Muon Energy Resolution") despine(ax=plt.gca(),left=True,trim=True) plt.gca().get_yaxis().set_visible(False) plt.subplot(3,3,8) plt.hist(samples[:,7],bins=100,histtype='step') plt.xlabel("Muon Scale") despine(ax=plt.gca(),left=True,trim=True) plt.gca().get_yaxis().set_visible(False) plt.tight_layout() if args.save: plt.savefig("chi2_fit_posterior.pdf") plt.savefig("chi2_fit_posterior.eps") else: plt.suptitle("Fit Posteriors") handles = [Line2D([0], [0], color='C0'), Line2D([0], [0], color='C1'), Line2D([0], [0], color='C2')] labels = ('Data','Monte Carlo','External Muons') fig = plt.figure() hists = get_data_hists(data,bins) hists_muon = get_data_hists(muon,bins,scale=xopt[7]) hists_mc = get_mc_hists(data_mc,xopt,bins,apply_norm=True) plot_hist2(hists,bins=bins,color='C0') plot_hist2(hists_mc,bins=bins,color='C1') plot_hist2(hists_muon,bins=bins,color='C2') for id in (20,22,2020,2022,2222): if id == 20: plt.subplot(2,3,1) elif id == 22: plt.subplot(2,3,2) elif id == 2020: plt.subplot(2,3,4) elif id == 2022: plt.subplot(2,3,5) elif id == 2222: plt.subplot(2,3,6) plt.text(0.95,0.95,"p = %.2f" % prob[id],horizontalalignment='right',verticalalignment='top',transform=plt.gca().transAxes) fig.legend(handles,labels,loc='upper right') despine(fig,trim=True) if args.save: plt.savefig("chi2_prompt.pdf") plt.savefig("chi2_prompt.eps") else: plt.suptitle("Without Neutron Follower") fig = plt.figure() hists = get_data_hists(data_atm,bins) hists_muon = get_data_hists(muon_atm,bins,scale=xopt[7]) hists_mc = get_mc_hists(data_atm_mc,xopt,bins,apply_norm=True) plot_hist2(hists,bins=bins,color='C0') plot_hist2(hists_mc,bins=bins,color='C1') plot_hist2(hists_muon,bins=bins,color='C1') for id in (20,22,2020,2022,2222): if id == 20: plt.subplot(2,3,1) elif id == 22: plt.subplot(2,3,2) elif id == 2020: plt.subplot(2,3,4) elif id == 2022: plt.subplot(2,3,5) elif id == 2222: plt.subplot(2,3,6) plt.text(0.95,0.95,"p = %.2f" % prob_atm[id],horizontalalignment='right',verticalalignment='top',transform=plt.gca().transAxes) fig.legend(handles,labels,loc='upper right') despine(fig,trim=True) if args.save: plt.savefig("chi2_atm.pdf") plt.savefig("chi2_atm.eps") else: plt.suptitle("With Neutron Follower") plt.show()