#!/usr/bin/env python # Copyright (c) 2019, Anthony Latorre # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # You should have received a copy of the GNU General Public License along with # this program. If not, see . """ Very simple script to analyze GENIE MC to estimate the expected event rate from atmospheric neutrino events before and after different cuts. To run it simply pass the filename of a GENIE ntuple file: $ ./analyze-genie-mc mc_atm_nu_genie_010000_0.gst.root Note: The input files should be in the GENIE "ntuple" format which you can create by using the gntpc utility. For example: $ gntpc -i /sno/output/d2o-leta/mc_atmospherics/atmospheric_neutrinos_genie/root/mc_atm_nu_genie_010000_0.root -f gst will create a new file mc_atm_nu_genie_010000_0.gst.root in the current working directory in the ntuple file format. """ from __future__ import print_function, division import ROOT import numpy as np # on retina screens, the default plots are way too small # by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1 # Qt5 will scale everything using the dpi in ~/.Xresources import matplotlib matplotlib.use("Qt5Agg") def tick_formatter(x, pos): if x < 1: return '%.1f' % x else: return '%.0f' % x # FIXME: What is this for the salt phase? NEUTRON_DETECTION_EFFICIENCY = 0.5 # FIXME: What is the index for D2O? INDEX_HEAVY_WATER = 1.3 # fractional energy resolution # from Richie's thesis page 134 ENERGY_RESOLUTION = 0.05 def pdg_code_to_string(pdg): A = int(("%010i" % event.tgt)[-4:-1]) Z = int(("%010i" % event.tgt)[-7:-4]) if Z == 1: atom = 'H' elif Z == 8: atom = 'O' elif Z == 6: atom = 'C' else: raise NotImplementedError("unknown atom %i" % Z) return '%i%s' % (A,atom) def get_reaction(event): reactants = [] products = [] if event.neu == 12: reactants.append('ve') elif event.neu == -12: reactants.append('vebar') elif event.neu == 14: reactants.append('vu') elif event.neu == -14: reactants.append('vubar') elif event.neu == 16: reactants.append('vt') elif event.neu == -16: reactants.append('vtbar') if event.hitnuc == 2212: reactants.append('p') elif event.hitnuc == 2112: reactants.append('n') elif event.hitnuc == 0: reactants.append(pdg_code_to_string(event.tgt)) else: print("unknown nucleon %i" % event.hitnuc) if event.cc: if event.neu == 12: products.append('e-') elif event.neu == -12: products.append('e+') elif event.neu == 14: products.append('u-') elif event.neu == -14: products.append('u+') elif event.neu == 16: products.append('t-') elif event.neu == -16: products.append('t+') elif event.nc: if event.neu == 12: products.append('ve') elif event.neu == -12: products.append('vebar') elif event.neu == 14: products.append('vu') elif event.neu == -14: products.append('vubar') elif event.neu == 16: products.append('vt') elif event.neu == -16: products.append('vtbar') else: products.append("???") for pdg in event.pdgf: if pdg == 2112: products.append('n') elif abs(pdg) == 11: # e- or e+ if pdg == 11: products.append('e-') else: products.append('e+') elif pdg == 22: # gamma products.append('gamma') elif pdg == 111: # pi0 products.append('pi0') elif abs(pdg) == 211: # pi+/- if pdg == 211: products.append('pi+') else: products.append('pi-') elif abs(pdg) == 311: if pdg == 311: products.append('K0') else: products.append('K0bar') elif abs(pdg) == 321: # K+/- if pdg == 321: products.append('K+') else: products.append('K-') elif abs(pdg) == 3222: products.append('Sigma+') elif abs(pdg) == 3112: products.append('Sigma-') elif abs(pdg) == 3122: products.append('Delta') elif pdg == 2212: products.append('p') elif int(("%010i" % abs(pdg))[0]) == 1: products.append(pdg_code_to_string(pdg)) else: print("unknown pdg code %i" % pdg) return ' + '.join(reactants) + ' -> ' + ' + '.join(products) if __name__ == '__main__': import argparse import matplotlib.pyplot as plt from collections import Counter parser = argparse.ArgumentParser("script to analyze GENIE 'ntuple' ROOT files") parser.add_argument("filenames", nargs='+', help="GENIE ROOT files") args = parser.parse_args() bins = np.logspace(-1,2,100) El = [] total_neutrons = [] total_neutrons_detected = [] E = [] KE = [] r = [] total_nrings = [] total_e_like_rings = [] total_u_like_rings = [] reactions = Counter() for filename in args.filenames: print("analyzing %s" % filename) f = ROOT.TFile(filename) T = f.Get("gst") for event in T: neutrons = 0 nrings = 0 e_like_rings = 0 u_like_rings = 0 ke = 0 if event.cc: if abs(event.neu) == 12: e_like_rings = 1 else: u_like_rings = 1 nrings = 1 ke += event.El elif event.nc: pass else: print("event is not cc or nc!") continue for i, pdg in enumerate(event.pdgf): if pdg == 2112: neutrons += 1 elif abs(pdg) == 11: # e- or e+ if event.Ef[i] > 0.1: # for now assume we only count rings from electrons # with > 100 MeV nrings += 1 e_like_rings += 1 ke += event.Ef[i] elif pdg == 22: # gamma if event.Ef[i] > 0.1: # for now assume we only count rings from gammas with > # 100 MeV nrings += 1 e_like_rings += 1 ke += event.Ef[i] elif pdg == 111: # pi0 nrings += 1 e_like_rings += 1 ke += event.Ef[i] elif abs(pdg) == 211: # pi+/- # momentum of ith particle in hadronic system p = np.sqrt(event.pxf[i]**2 + event.pyf[i]**2 + event.pzf[i]**2) # velocity of ith particle (in units of c) # FIXME: is energy total energy or kinetic energy? v = p/event.Ef[i] if v > 1/INDEX_HEAVY_WATER: # if the pion is above threshold, we assume that it # produces 2 muon like rings nrings += 2 u_like_rings += 2 else: # if the pion is not above threshold, we assume that it # produces 1 muon like ring nrings += 1 u_like_rings += 1 # FIXME: should actually be a beta distribution p = np.sqrt(event.pxf[i]**2 + event.pyf[i]**2 + event.pzf[i]**2) m = np.sqrt(event.Ef[i]**2 - p**2) ke += event.Ef[i] - m elif abs(pdg) in [2212,3222,311,321,3122,3112]: # momentum of ith particle in hadronic system p = np.sqrt(event.pxf[i]**2 + event.pyf[i]**2 + event.pzf[i]**2) # velocity of ith particle (in units of c) # FIXME: is energy total energy or kinetic energy? v = p/event.Ef[i] if v > 1/INDEX_HEAVY_WATER: # above cerenkov threshold nrings += 1 u_like_rings += 1 m = np.sqrt(event.Ef[i]**2 - p**2) ke += event.Ef[i] - m elif int(("%010i" % abs(pdg))[0]) == 1: # usually just excited 16O atom which won't produce a lot # of light pass else: print("unknown pdg code %i" % pdg) total_neutrons.append(neutrons) total_neutrons_detected.append(np.random.binomial(neutrons,NEUTRON_DETECTION_EFFICIENCY)) total_nrings.append(nrings) total_e_like_rings.append(e_like_rings) total_u_like_rings.append(u_like_rings) El.append(event.El) E.append(event.calresp0) KE.append(ke + np.random.randn()*ke*ENERGY_RESOLUTION) r.append(np.sqrt(event.vtxx**2 + event.vtxy**2 + event.vtxz**2)) if total_neutrons_detected[-1] == 0 and nrings >= 2 and ((e_like_rings == 0) or (u_like_rings == 0)): reactions.update([get_reaction(event)]) total = sum(reactions.values()) for reaction, count in reactions.most_common(10): print("%.0f%% %s" % (count*100/total, reaction)) El = np.array(El) total_neutrons = np.array(total_neutrons) total_neutrons_detected = np.array(total_neutrons_detected) E = np.array(E) KE = np.array(KE) r = np.array(r) total_nrings = np.array(total_nrings) total_e_like_rings = np.array(total_e_like_rings) total_u_like_rings = np.array(total_u_like_rings) cut1 = (total_neutrons_detected == 0) cut2 = (total_neutrons_detected == 0) & (total_nrings >= 2) cut3 = (total_neutrons_detected == 0) & (total_nrings >= 2) & ((total_e_like_rings == 0) | (total_u_like_rings == 0)) El1 = El[cut1] El2 = El[cut2] El3 = El[cut3] E1 = E[cut1] E2 = E[cut2] E3 = E[cut3] KE1 = KE[cut1] KE2 = KE[cut2] KE3 = KE[cut3] plt.figure() bincenters = (bins[1:] + bins[:-1])/2 x = np.repeat(bins,2) El_hist, _ = np.histogram(El, bins=bins) total_events = El_hist.sum() # FIXME: this is just a rough estimate of how many events we expect in 3 # years based on Richie's thesis which says "Over the 306.4 live days of # the D2O phase we expect a total of 192.4 events within the acrylic vessel # and 504.5 events within the PSUP. El_hist = El_hist*230/total_events y = np.concatenate([[0],np.repeat(El_hist,2),[0]]) El1_hist, _ = np.histogram(El1, bins=bins) El1_hist = El1_hist*230/total_events y1 = np.concatenate([[0],np.repeat(El1_hist,2),[0]]) El2_hist, _ = np.histogram(El2, bins=bins) El2_hist = El2_hist*230/total_events y2 = np.concatenate([[0],np.repeat(El2_hist,2),[0]]) El3_hist, _ = np.histogram(El3, bins=bins) El3_hist = El3_hist*230/total_events y3 = np.concatenate([[0],np.repeat(El3_hist,2),[0]]) plt.plot(x, y, label="All events") plt.step(x, y1, where='mid', label="n") plt.step(x, y2, where='mid', label="n + nrings") plt.step(x, y3, where='mid', label="n + nrings + same flavor") plt.xlabel("Energy (GeV)") plt.ylabel("Events/year") plt.gca().set_xscale("log") plt.gca().xaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(tick_formatter)) plt.xlim((0.02,bins[-1])) plt.ylim((0,None)) plt.legend() plt.title("Primary Lepton Energy") plt.figure() KE_hist, _ = np.histogram(KE, bins=bins) KE_signal, _ = np.histogram(np.random.randn(1000)*1.0*ENERGY_RESOLUTION + 1.0, bins=bins) total_events = KE_hist.sum() # FIXME: this is just a rough estimate of how many events we expect in 3 # years based on Richie's thesis which says "Over the 306.4 live days of # the D2O phase we expect a total of 192.4 events within the acrylic vessel # and 504.5 events within the PSUP. KE_hist = KE_hist*230/total_events y = np.concatenate([[0],np.repeat(KE_hist,2),[0]]) KE1_hist, _ = np.histogram(KE1, bins=bins) KE1_hist = KE1_hist*230/total_events y1 = np.concatenate([[0],np.repeat(KE1_hist,2),[0]]) KE2_hist, _ = np.histogram(KE2, bins=bins) KE2_hist = KE2_hist*230/total_events y2 = np.concatenate([[0],np.repeat(KE2_hist,2),[0]]) KE3_hist, _ = np.histogram(KE3, bins=bins) KE3_hist = KE3_hist*230/total_events y3 = np.concatenate([[0],np.repeat(KE3_hist,2),[0]]) KE_signal = KE_signal*10/np.sum(KE_signal) y4 = np.concatenate([[0],np.repeat(KE_signal,2),[0]]) plt.plot(x, y, label="All events") plt.plot(x, y1, label="n") plt.plot(x, y2, label="n + nrings") plt.plot(x, y3, label="n + nrings + same flavor") plt.plot(x, y4, label="1 GeV signal") plt.xlabel("Energy (GeV)") plt.ylabel(r"Expected Event Rate (year$^{-1}$)") plt.gca().set_xscale("log") plt.gca().xaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(tick_formatter)) plt.xlim((0.02,bins[-1])) plt.ylim((0,None)) plt.legend() plt.title("Approximate Visible Energy") plt.figure() plt.hist(r, bins=np.linspace(0,8,100), histtype='step') plt.xlabel("R (m)") plt.title("Radius of Events") plt.figure() plt.hist(total_neutrons, bins=np.arange(11)-0.5, histtype='step') plt.xlabel("Number of Neutrons") plt.title("Number of Neutrons") plt.figure() plt.hist(total_nrings, bins=np.arange(11)-0.5, histtype='step') plt.xlabel("Number of Rings") plt.title("Number of Rings (approximate)") plt.show() ='n360' href='#n360'>360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709