#!/usr/bin/env python # Copyright (c) 2019, Anthony Latorre # # This program is free software: you can redistribute it and/or modify it # under the terms of the GNU General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) # any later version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or # FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for # more details. # # You should have received a copy of the GNU General Public License along with # this program. If not, see . """ Very simple script to analyze GENIE MC to estimate the expected event rate from atmospheric neutrino events before and after different cuts. To run it simply pass the filename of a GENIE ntuple file: $ ./analyze-genie-mc mc_atm_nu_genie_010000_0.gst.root Note: The input files should be in the GENIE "ntuple" format which you can create by using the gntpc utility. For example: $ gntpc -i /sno/output/d2o-leta/mc_atmospherics/atmospheric_neutrinos_genie/root/mc_atm_nu_genie_010000_0.root -f gst will create a new file mc_atm_nu_genie_010000_0.gst.root in the current working directory in the ntuple file format. """ from __future__ import print_function, division import ROOT import numpy as np # on retina screens, the default plots are way too small # by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1 # Qt5 will scale everything using the dpi in ~/.Xresources import matplotlib matplotlib.use("Qt5Agg") def tick_formatter(x, pos): if x < 1: return '%.1f' % x else: return '%.0f' % x # FIXME: What is this for the salt phase? NEUTRON_DETECTION_EFFICIENCY = 0.5 # FIXME: What is the index for D2O? INDEX_HEAVY_WATER = 1.3 # fractional energy resolution # from Richie's thesis page 134 ENERGY_RESOLUTION = 0.05 def pdg_code_to_string(pdg): A = int(("%010i" % event.tgt)[-4:-1]) Z = int(("%010i" % event.tgt)[-7:-4]) if Z == 1: atom = 'H' elif Z == 8: atom = 'O' elif Z == 6: atom = 'C' else: raise NotImplementedError("unknown atom %i" % Z) return '%i%s' % (A,atom) def get_reaction(event): reactants = [] products = [] if event.neu == 12: reactants.append('ve') elif event.neu == -12: reactants.append('vebar') elif event.neu == 14: reactants.append('vu') elif event.neu == -14: reactants.append('vubar') elif event.neu == 16: reactants.append('vt') elif event.neu == -16: reactants.append('vtbar') if event.hitnuc == 2212: reactants.append('p') elif event.hitnuc == 2112: reactants.append('n') elif event.hitnuc == 0: reactants.append(pdg_code_to_string(event.tgt)) else: print("unknown nucleon %i" % event.hitnuc) if event.cc: if event.neu == 12: products.append('e-') elif event.neu == -12: products.append('e+') elif event.neu == 14: products.append('u-') elif event.neu == -14: products.append('u+') elif event.neu == 16: products.append('t-') elif event.neu == -16: products.append('t+') elif event.nc: if event.neu == 12: products.append('ve') elif event.neu == -12: products.append('vebar') elif event.neu == 14: products.append('vu') elif event.neu == -14: products.append('vubar') elif event.neu == 16: products.append('vt') elif event.neu == -16: products.append('vtbar') else: products.append("???") for pdg in event.pdgf: if pdg == 2112: products.append('n') elif abs(pdg) == 11: # e- or e+ if pdg == 11: products.append('e-') else: products.append('e+') elif pdg == 22: # gamma products.append('gamma') elif pdg == 111: # pi0 products.append('pi0') elif abs(pdg) == 211: # pi+/- if pdg == 211: products.append('pi+') else: products.append('pi-') elif abs(pdg) == 311: if pdg == 311: products.append('K0') else: products.append('K0bar') elif abs(pdg) == 321: # K+/- if pdg == 321: products.append('K+') else: products.append('K-') elif abs(pdg) == 3222: products.append('Sigma+') elif abs(pdg) == 3112: products.append('Sigma-') elif abs(pdg) == 3122: products.append('Delta') elif pdg == 2212: products.append('p') elif int(("%010i" % abs(pdg))[0]) == 1: products.append(pdg_code_to_string(pdg)) else: print("unknown pdg code %i" % pdg) return ' + '.join(reactants) + ' -> ' + ' + '.join(products) if __name__ == '__main__': import argparse import matplotlib.pyplot as plt from collections import Counter parser = argparse.ArgumentParser("script to analyze GENIE 'ntuple' ROOT files") parser.add_argument("filenames", nargs='+', help="GENIE ROOT files") args = parser.parse_args() bins = np.logspace(-1,2,100) El = [] total_neutrons = [] total_neutrons_detected = [] E = [] KE = [] r = [] total_nrings = [] total_e_like_rings = [] total_u_like_rings = [] reactions = Counter() for filename in args.filenames: print("analyzing %s" % filename) f = ROOT.TFile(filename) T = f.Get("gst") for event in T: neutrons = 0 nrings = 0 e_like_rings = 0 u_like_rings = 0 ke = 0 if event.cc: if abs(event.neu) == 12: e_like_rings = 1 else: u_like_rings = 1 nrings = 1 ke += event.El elif event.nc: pass else: print("event is not cc or nc!") continue for i, pdg in enumerate(event.pdgf): if pdg == 2112: neutrons += 1 elif abs(pdg) == 11: # e- or e+ if event.Ef[i] > 0.1: # for now assume we only count rings from electrons # with > 100 MeV nrings += 1 e_like_rings += 1 ke += event.Ef[i] elif pdg == 22: # gamma if event.Ef[i] > 0.1: # for now assume we only count rings from gammas with > # 100 MeV nrings += 1 e_like_rings += 1 ke += event.Ef[i] elif pdg == 111: # pi0 nrings += 1 e_like_rings += 1 ke += event.Ef[i] elif abs(pdg) == 211: # pi+/- # momentum of ith particle in hadronic system p = np.sqrt(event.pxf[i]**2 + event.pyf[i]**2 + event.pzf[i]**2) # velocity of ith particle (in units of c) # FIXME: is energy total energy or kinetic energy? v = p/event.Ef[i] if v > 1/INDEX_HEAVY_WATER: # if the pion is above threshold, we assume that it # produces 2 muon like rings nrings += 2 u_like_rings += 2 else: # if the pion is not above threshold, we assume that it # produces 1 muon like ring nrings += 1 u_like_rings += 1 # FIXME: should actually be a beta distribution p = np.sqrt(event.pxf[i]**2 + event.pyf[i]**2 + event.pzf[i]**2) m = np.sqrt(event.Ef[i]**2 - p**2) ke += event.Ef[i] - m elif abs(pdg) in [2212,3222,311,321,3122,3112]: # momentum of ith particle in hadronic system p = np.sqrt(event.pxf[i]**2 + event.pyf[i]**2 + event.pzf[i]**2) # velocity of ith particle (in units of c) # FIXME: is energy total energy or kinetic energy? v = p/event.Ef[i] if v > 1/INDEX_HEAVY_WATER: # above cerenkov threshold nrings += 1 u_like_rings += 1 m = np.sqrt(event.Ef[i]**2 - p**2) ke += event.Ef[i] - m elif int(("%010i" % abs(pdg))[0]) == 1: # usually just excited 16O atom which won't produce a lot # of light pass else: print("unknown pdg code %i" % pdg) total_neutrons.append(neutrons) total_neutrons_detected.append(np.random.binomial(neutrons,NEUTRON_DETECTION_EFFICIENCY)) total_nrings.append(nrings) total_e_like_rings.append(e_like_rings) total_u_like_rings.append(u_like_rings) El.append(event.El) E.append(event.calresp0) KE.append(ke + np.random.randn()*ke*ENERGY_RESOLUTION) r.append(np.sqrt(event.vtxx**2 + event.vtxy**2 + event.vtxz**2)) if total_neutrons_detected[-1] == 0 and nrings >= 2 and ((e_like_rings == 0) or (u_like_rings == 0)): reactions.update([get_reaction(event)]) total = sum(reactions.values()) for reaction, count in reactions.most_common(10): print("%.0f%% %s" % (count*100/total, reaction)) El = np.array(El) total_neutrons = np.array(total_neutrons) total_neutrons_detected = np.array(total_neutrons_detected) E = np.array(E) KE = np.array(KE) r = np.array(r) total_nrings = np.array(total_nrings) total_e_like_rings = np.array(total_e_like_rings) total_u_like_rings = np.array(total_u_like_rings) cut1 = (total_neutrons_detected == 0) cut2 = (total_neutrons_detected == 0) & (total_nrings >= 2) cut3 = (total_neutrons_detected == 0) & (total_nrings >= 2) & ((total_e_like_rings == 0) | (total_u_like_rings == 0)) El1 = El[cut1] El2 = El[cut2] El3 = El[cut3] E1 = E[cut1] E2 = E[cut2] E3 = E[cut3] KE1 = KE[cut1] KE2 = KE[cut2] KE3 = KE[cut3] plt.figure() bincenters = (bins[1:] + bins[:-1])/2 x = np.repeat(bins,2) El_hist, _ = np.histogram(El, bins=bins) total_events = El_hist.sum() # FIXME: this is just a rough estimate of how many events we expect in 3 # years based on Richie's thesis which says "Over the 306.4 live days of # the D2O phase we expect a total of 192.4 events within the acrylic vessel # and 504.5 events within the PSUP. El_hist = El_hist*230/total_events y = np.concatenate([[0],np.repeat(El_hist,2),[0]]) El1_hist, _ = np.histogram(El1, bins=bins) El1_hist = El1_hist*230/total_events y1 = np.concatenate([[0],np.repeat(El1_hist,2),[0]]) El2_hist, _ = np.histogram(El2, bins=bins) El2_hist = El2_hist*230/total_events y2 = np.concatenate([[0],np.repeat(El2_hist,2),[0]]) El3_hist, _ = np.histogram(El3, bins=bins) El3_hist = El3_hist*230/total_events y3 = np.concatenate([[0],np.repeat(El3_hist,2),[0]]) plt.plot(x, y, label="All events") plt.step(x, y1, where='mid', label="n") plt.step(x, y2, where='mid', label="n + nrings") plt.step(x, y3, where='mid', label="n + nrings + same flavor") plt.xlabel("Energy (GeV)") plt.ylabel("Events/year") plt.gca().set_xscale("log") plt.gca().xaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(tick_formatter)) plt.xlim((0.02,bins[-1])) plt.ylim((0,None)) plt.legend() plt.title("Primary Lepton Energy") plt.figure() KE_hist, _ = np.histogram(KE, bins=bins) KE_signal, _ = np.histogram(np.random.randn(1000)*1.0*ENERGY_RESOLUTION + 1.0, bins=bins) total_events = KE_hist.sum() # FIXME: this is just a rough estimate of how many events we expect in 3 # years based on Richie's thesis which says "Over the 306.4 live days of # the D2O phase we expect a total of 192.4 events within the acrylic vessel # and 504.5 events within the PSUP. KE_hist = KE_hist*230/total_events y = np.concatenate([[0],np.repeat(KE_hist,2),[0]]) KE1_hist, _ = np.histogram(KE1, bins=bins) KE1_hist = KE1_hist*230/total_events y1 = np.concatenate([[0],np.repeat(KE1_hist,2),[0]]) KE2_hist, _ = np.histogram(KE2, bins=bins) KE2_hist = KE2_hist*230/total_events y2 = np.concatenate([[0],np.repeat(KE2_hist,2),[0]]) KE3_hist, _ = np.histogram(KE3, bins=bins) KE3_hist = KE3_hist*230/total_events y3 = np.concatenate([[0],np.repeat(KE3_hist,2),[0]]) KE_signal = KE_signal*10/np.sum(KE_signal) y4 = np.concatenate([[0],np.repeat(KE_signal,2),[0]]) plt.plot(x, y, label="All events") plt.plot(x, y1, label="n") plt.plot(x, y2, label="n + nrings") plt.plot(x, y3, label="n + nrings + same flavor") plt.plot(x, y4, label="1 GeV signal") plt.xlabel("Energy (GeV)") plt.ylabel(r"Expected Event Rate (year$^{-1}$)") plt.gca().set_xscale("log") plt.gca().xaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(tick_formatter)) plt.xlim((0.02,bins[-1])) plt.ylim((0,None)) plt.legend() plt.title("Approximate Visible Energy") plt.figure() plt.hist(r, bins=np.linspace(0,8,100), histtype='step') plt.xlabel("R (m)") plt.title("Radius of Events") plt.figure() plt.hist(total_neutrons, bins=np.arange(11)-0.5, histtype='step') plt.xlabel("Number of Neutrons") plt.title("Number of Neutrons") plt.figure() plt.hist(total_nrings, bins=np.arange(11)-0.5, histtype='step') plt.xlabel("Number of Rings") plt.title("Number of Rings (approximate)") plt.show() 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411