/src/

/a> 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.

from __future__ import print_function, division
import yaml
try:
    from yaml import CLoader as Loader
except ImportError:
    from yaml.loader import SafeLoader as Loader
import numpy as np
from scipy.stats import iqr
from matplotlib.lines import Line2D

# from https://stackoverflow.com/questions/287871/how-to-print-colored-text-in-terminal-in-python
class bcolors:
    HEADER = '\033[95m'
    OKBLUE = '\033[94m'
    OKGREEN = '\033[92m'
    WARNING = '\033[93m'
    FAIL = '\033[91m'
    ENDC = '\033[0m'
    BOLD = '\033[1m'
    UNDERLINE = '\033[4m'

# on retina screens, the default plots are way too small
# by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1
# Qt5 will scale everything using the dpi in ~/.Xresources
import matplotlib
matplotlib.use("Qt5Agg")

SNOMAN_MASS = {
    20: 0.511,
    21: 0.511,
    22: 105.658,
    23: 105.658
}

AV_RADIUS = 600.0

# Data cleaning bitmasks.
DC_MUON           = 0x1
DC_JUNK           = 0x2
DC_CRATE_ISOTROPY = 0x4
DC_QVNHIT         = 0x8
DC_NECK           = 0x10
DC_FLASHER        = 0x20
DC_ESUM           = 0x40
DC_OWL            = 0x80
DC_OWL_TRIGGER    = 0x100
DC_FTS            = 0x200
DC_ITC            = 0x400

def plot_hist(df, title=None):
    for id, df_id in sorted(df.groupby('id')):
        if id == 20:
            plt.subplot(3,4,1)
        elif id == 22:
            plt.subplot(3,4,2)
        elif id == 2020:
            plt.subplot(3,4,5)
        elif id == 2022:
            plt.subplot(3,4,6)
        elif id == 2222:
            plt.subplot(3,4,7)
        elif id == 202020:
            plt.subplot(3,4,9)
        elif id == 202022:
            plt.subplot(3,4,10)
        elif id == 202222:
            plt.subplot(3,4,11)
        elif id == 222222:
            plt.subplot(3,4,12)

        plt.hist(df_id.ke.values, bins=np.linspace(20,10e3,100), histtype='step')
        plt.xlabel("Energy (MeV)")
        plt.title(str(id))

    if title:
        plt.suptitle(title)

    if len(df):
        plt.tight_layout()

def chunks(l, n):
    """Yield successive n-sized chunks from l."""
    for i in range(0, len(l), n):
        yield l[i:i + n]

def print_warning(msg):
    print(bcolors.FAIL + msg + bcolors.ENDC,file=sys.stderr)

def unwrap(p, delta, axis=-1):
    """
    A modified version of np.unwrap() useful for unwrapping the 50 MHz clock.
    It unwraps discontinuities bigger than delta/2 by delta.

    Example:

        >>> a = np.arange(10) % 5
        >>> a
        array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4])
        >>> unwrap(a,5)
        array([ 0.,  1.,  2.,  3.,  4.,  5.,  6.,  7.,  8.,  9.])

    In the case of the 50 MHz clock delta should be 0x7ffffffffff*20.0.
    """
    p = np.asarray(p)
    nd = p.ndim
    dd = np.diff(p, axis=axis)
    slice1 = [slice(None, None)]*nd     # full slices
    slice1[axis] = slice(1, None)
    slice1 = tuple(slice1)
    ddmod = np.mod(dd + delta/2, delta) - delta/2
    np.copyto(ddmod, delta/2, where=(ddmod == -delta/2) & (dd > 0))
    ph_correct = ddmod - dd
    np.copyto(ph_correct, 0, where=abs(dd) < delta/2)
    up = np.array(p, copy=True, dtype='d')
    up[slice1] = p[slice1] + ph_correct.cumsum(axis)
    return up

def unwrap_50_mhz_clock(gtr):
    """
    Unwrap an array with 50 MHz clock times. These times should all be in
    nanoseconds and come from the KEV_GTR variable in the EV bank.

    Note: We assume here that the events are already ordered contiguously by
    GTID, so you shouldn't pass an array with multiple runs!
    """
    return unwrap(gtr,0x7ffffffffff*20.0)

if __name__ == '__main__':
    import argparse
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import sys
    import h5py

    parser = argparse.ArgumentParser("plot fit results")
    parser.add_argument("filenames", nargs='+', help="input files")
    args = parser.parse_args()

    ev = pd.concat([pd.read_hdf(filename, "ev") for filename in args.filenames],ignore_index=True)
    fits = pd.concat([pd.read_hdf(filename, "fits") for filename in args.filenames],ignore_index=True)

    # First, remove junk events since orphans won't have a 50 MHz clock and so
    # could screw up the 50 MHz clock unwrapping
    ev = ev[ev.dc & DC_JUNK == 0]

    # make sure events are sorted by GTID
    ev = ev.sort_values(by=['run','gtid'])

    # unwrap the 50 MHz clock within each run
    ev.gtr = ev.groupby(['run'],as_index=False)['gtr'].transform(unwrap_50_mhz_clock)

    # This is a bit of a hack. It appears that many times the fit will
    # actually do much better by including a very low energy electron or
    # muon. I believe the reason for this is that of course my likelihood
    # function is not perfect (for example, I don't include the correct
    # angular distribution for Rayleigh scattered light), and so the fitter
    # often wants to add a very low energy electron or muon to fix things.
    #
    # Ideally I would fix the likelihood function, but for now we just
    # discard any fit results which have a very low energy electron or
    # muon.
    #
    # FIXME: Test this since query() is new to pandas
    fits = fits.query('not (n > 1 and ((id1 == 20 and energy1 < 20)  or (id2 == 20 and energy2 < 20)  or (id3 == 20 and energy3 < 20)))')
    fits = fits.query('not (n > 1 and ((id2 == 22 and energy1 < 200) or (id2 == 22 and energy2 < 200) or (id3 == 22 and energy3 < 200)))')

    # Calculate the approximate Ockham factor.
    # See Chapter 20 in "Probability Theory: The Logic of Science" by Jaynes
    #
    # Note: This is a really approximate form by assuming that the shape of
    # the likelihood space is equal to the average uncertainty in the
    # different parameters.
    fits['w'] = fits['n']*np.log(0.1*0.001) + np.log(fits['energy1']) + fits['n']*np.log(1e-4/(4*np.pi))

    # Note: we index on the left hand site with loc to avoid a copy error
    #
    # See https://www.dataquest.io/blog/settingwithcopywarning/
    fits.loc[fits['n'] > 1, 'w'] += np.log(fits[fits['n'] > 1]['energy2'])
    fits.loc[fits['n'] > 2, 'w'] += np.log(fits[fits['n'] > 2]['energy3'])

    fits['fmin'] = fits['fmin'] - fits['w']

    fits['psi'] /= fits.merge(ev,on=['run','gtid'])['nhit']
    fits['ke'] = fits['energy1']
    fits['id'] = fits['id1']
    fits.loc[fits['n'] == 2, 'id'] = fits['id1']*100 + fits['id2']
    fits.loc[fits['n'] == 3, 'id'] = fits['id1']*10000 + fits['id2']*100 + fits['id3']
    fits['theta'] = fits['theta1']

    # Make sure events are in order. We use run number and GTID here which
    # should be in time order as well except for bit flips in the GTID
    # This is important for later when we look at time differences in the 50
    # MHz clock. We should perhaps do a check here based on the 10 MHz clock to
    # make sure things are in order
    ev = ev.sort_values(by=['run','gtid'])

    print("number of events = %i" % len(ev))

    # First, do basic data cleaning which is done for all events.
    ev = ev[ev.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ITC) == 0]

    print("number of events after data cleaning = %i" % len(ev))

    # Now, we select events tagged by the muon tag which should tag only
    # external muons. We keep the sample of muons since it's needed later to
    # identify Michel electrons and to apply the muon follower cut
    muons = ev[(ev.dc & DC_MUON) != 0]

    print("number of muons = %i" % len(muons))

    # Now, select prompt events.
    #
    # We define a prompt event here as any event with an NHIT > 100 and whose
    # previous > 100 nhit event was more than 250 ms ago
    prompt = ev[ev.nhit >= 100]
    prompt_mask = np.concatenate(([True],np.diff(prompt.gtr.values) > 250e6))

    # Michel electrons and neutrons can be any event which is not a prompt
    # event
    follower = pd.concat([ev[ev.nhit < 100],prompt[~prompt_mask]])

    # Apply the prompt mask
    prompt = prompt[prompt_mask]

    # Try to identify Michel electrons. Currenly, the event selection is based
    # on Richie's thesis. Here, we do the following:
    #
    # 1. Apply more data cleaning cuts to potential Michel electrons
    # 2. Nhit >= 100
    # 3. It must be > 800 ns and less than 20 microseconds from a prompt event
    #    or a muon
    prompt_plus_muons = pd.concat([prompt,muons])

    print("number of events after prompt nhit cut = %i" % len(prompt))

    if prompt_plus_muons.size and follower.size:
        # require Michel events to pass more of the SNO data cleaning cuts
        michel = follower[follower.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ESUM | DC_OWL | DC_OWL_TRIGGER | DC_FTS) == 0]

        michel = michel[michel.nhit >= 100]

        # Accept events which had a muon more than 800 nanoseconds but less
        # than 20 microseconds before them. The 800 nanoseconds cut comes from
        # Richie's thesis. He also mentions that the In Time Channel Spread Cut
        # is very effective at cutting electrons events caused by muons, so I
        # should implement that.
        #
        # Note: We currently don't look across run boundaries. This should be a
        # *very* small effect, and the logic to do so would be very complicated
        # since I would have to deal with 50 MHz clock rollovers, etc.
        #
        # Do a simple python for loop here over the runs since we create
        # temporary arrays with shape (michel.size,prompt_plus_muons.size)
        # which could be too big for the full dataset.
        #
        # There might be some clever way to do this without the loop in Pandas,
        # but I don't know how.
        michel_sum = None
        for run, michel_run in michel.groupby(['run']):
            prompt_plus_muons_run = prompt_plus_muons[prompt_plus_muons['run'] == run]
            michel_run = michel_run[np.any((michel_run.gtr.values > prompt_plus_muons_run.gtr.values[:,np.newaxis] + 800) & \
                                           (michel_run.gtr.values < prompt_plus_muons_run.gtr.values[:,np.newaxis] + 20e3),axis=0)]

            if michel_sum is None:
                michel_sum = michel_run
            else:
                michel_sum = michel_sum.append(michel_run)

        if michel_sum is not None:
            michel = michel_sum
        else:
            michel = pd.DataFrame(columns=follower.columns)
    else:
        michel = pd.DataFrame(columns=follower.columns)

    if prompt.size and follower.size:
        # neutron followers have to obey stricter set of data cleaning cuts
        neutron = follower[follower.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ESUM | DC_OWL | DC_OWL_TRIGGER | DC_FTS) == 0]
        neutron = neutron[~np.isnan(neutron.ftp_x) & ~np.isnan(neutron.rsp_energy)]
        r = np.sqrt(neutron.ftp_x**2 + neutron.ftp_y**2 + neutron.ftp_z**2)
        neutron = neutron[r < AV_RADIUS]
        neutron = neutron[neutron.rsp_energy > 4.0]

        # neutron events accepted after 20 microseconds and before 250 ms (50 ms during salt)
        prompt_sum = None
        atm_sum = None
        for run, prompt_run in prompt.groupby(['run']):
            neutron_run = neutron[neutron['run'] == run]

            neutron_mask = np.any((neutron_run.gtr.values > prompt_run.gtr.values[:,np.newaxis] + 20e3) & \
                                  (neutron_run.gtr.values < prompt_run.gtr.values[:,np.newaxis] + 250e6),axis=1)

            if prompt_sum is None:
                prompt_sum = prompt_run[~neutron_mask]
            else:
                prompt_sum = prompt_sum.append(prompt_run[~neutron_mask])

            if atm_sum is None:
                atm_sum = prompt_run[neutron_mask]
            else:
                atm_sum = atm_sum.append(prompt_run[neutron_mask])

        atm = atm_sum
        prompt = prompt_sum
    else:
        atm = pd.DataFrame(columns=prompt.columns)

    print("number of events after neutron follower cut = %i" % len(prompt))

    # Get rid of muon events in our main event sample
    prompt = prompt[(prompt.dc & DC_MUON) == 0]
    atm = atm[(atm.dc & DC_MUON) == 0]

    print("number of events after muon cut = %i" % len(prompt))

    if muons.size:
        # remove events 200 microseconds after a muon
        prompt = prompt[~np.any((prompt.run.values == muons.run.values[:,np.newaxis]) & \
                                (prompt.gtr.values > muons.gtr.values[:,np.newaxis]) & \
                                (prompt.gtr.values <= (muons.gtr.values[:,np.newaxis] + 200e3)),axis=0)]
        atm = atm[~np.any((atm.run.values == muons.run.values[:,np.newaxis]) & \
                          (atm.gtr.values > muons.gtr.values[:,np.newaxis]) & \
                          (atm.gtr.values <= (muons.gtr.values[:,np.newaxis] + 200e3)),axis=0)]

    # Check to see if there are any events with missing fit information
    atm_ra = atm[['run','gtid']].to_records(index=False)
    muons_ra = muons[['run','gtid']].to_records(index=False)
    prompt_ra = prompt[['run','gtid']].to_records(index=False)
    michel_ra = michel[['run','gtid']].to_records(index=False)
    fits_ra = fits[['run','gtid']].to_records(index=False)

    if len(atm_ra) and np.count_nonzero(~np.isin(atm_ra,fits_ra)):
        print_warning("skipping %i atmospheric events because they are missing fit information!" % np.count_nonzero(~np.isin(atm_ra,fits_ra)))

    if len(muons_ra) and np.count_nonzero(~np.isin(muons_ra,fits_ra)):
        print_warning("skipping %i muon events because they are missing fit information!" % np.count_nonzero(~np.isin(muons_ra,fits_ra)))

    if len(prompt_ra) and np.count_nonzero(~np.isin(prompt_ra,fits_ra)):
        print_warning("skipping %i signal events because they are missing fit information!" % np.count_nonzero(~np.isin(prompt_ra,fits_ra)))

    if len(michel_ra) and np.count_nonzero(~np.isin(michel_ra,fits_ra)):
        print_warning("skipping %i Michel events because they are missing fit information!" % np.count_nonzero(~np.isin(michel_ra,fits_ra)))

    # Now, we merge the event info with the fitter info.
    #
    # Note: This means that the dataframe now contains multiple rows for each
    # event, one for each fit hypothesis.
    atm = pd.merge(fits,atm,how='inner',on=['run','gtid'])
    muons = pd.merge(fits,muons,how='inner',on=['run','gtid'])
    michel = pd.merge(fits,michel,how='inner',on=['run','gtid'])
    prompt = pd.merge(fits,prompt,how='inner',on=['run','gtid'])

    # get rid of events which don't have a fit
    nan = np.isnan(prompt.fmin.values)

    if np.count_nonzero(nan):
        print_warning("skipping %i signal events because the negative log likelihood is nan!" % len(prompt[nan].groupby(['run','gtid'])))

    prompt = prompt[~nan]

    nan_atm = np.isnan(atm.fmin.values)

    if np.count_nonzero(nan_atm):
        print_warning("skipping %i atmospheric events because the negative log likelihood is nan!" % len(atm[nan_atm].groupby(['run','gtid'])))

    atm = atm[~nan_atm]

    nan_muon = np.isnan(muons.fmin.values)

    if np.count_nonzero(nan_muon):
        print_warning("skipping %i muons because the negative log likelihood is nan!" % len(muons[nan_muon].groupby(['run','gtid'])))

    muons = muons[~nan_muon]

    nan_michel = np.isnan(michel.fmin.values)

    if np.count_nonzero(nan_michel):
        print_warning("skipping %i michel electron events because the negative log likelihood is nan!" % len(michel[nan_michel].groupby(['run','gtid'])))

    michel = michel[~nan_michel]

    # get the best fit
    prompt = prompt.sort_values('fmin').groupby(['run','gtid']).nth(0)
    atm = atm.sort_values('fmin').groupby(['run','gtid']).nth(0)
    michel_best_fit = michel.sort_values('fmin').groupby(['run','gtid']).nth(0)
    muon_best_fit = muons.sort_values('fmin').groupby(['run','gtid']).nth(0)
    muons = muons[muons.id == 22]

    # require r < 6 meters
    prompt = prompt[np.sqrt(prompt.x.values**2 + prompt.y.values**2 + prompt.z.values**2) < AV_RADIUS]
    atm = atm[np.sqrt(atm.x.values**2 + atm.y.values**2 + atm.z.values**2) < AV_RADIUS]

    print("number of events after radius cut = %i" % len(prompt))

    # Note: Need to design and apply a psi based cut here

    plt.figure()
    plot_hist(prompt,"Without Neutron Follower")
    plt.figure()
    plot_hist(atm,"With Neutron Follower")
    plt.figure()
    plot_hist(michel_best_fit,"Michel Electrons")
    plt.figure()
    plot_hist(muon_best_fit,"External Muons")

    # Plot the energy and angular distribution for external muons
    plt.figure()
    plt.subplot(2,1,1)
    plt.hist(muons.ke.values, bins=np.logspace(3,7,100), histtype='step')
    plt.xlabel("Energy (MeV)")
    plt.gca().set_xscale("log")
    plt.subplot(2,1,2)
    plt.hist(np.cos(muons.theta.values), bins=np.linspace(-1,1,100), histtype='step')
    plt.xlabel(r"$\cos(\theta)$")
    plt.suptitle("Muons")

    # For the Michel energy plot, we only look at the single particle electron
    # fit
    michel = michel[michel.id == 20]

    plt.figure()
    plt.hist(michel.ke.values, bins=np.linspace(20,100,100), histtype='step', label="My fitter")
    if michel.size:
        plt.hist(michel[~np.isnan(michel.rsp_energy.values)].rsp_energy.values, bins=np.linspace(20,100,100), histtype='step',label="RSP")
    plt.xlabel("Energy (MeV)")
    plt.title("Michel Electrons")
    plt.legend()
    plt.show()