/* Copyright (c) 2019, Anthony Latorre * * This program is free software: you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) * any later version. * This program is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * You should have received a copy of the GNU General Public License along with * this program. If not, see . */ #include "pmt_response.h" #include "dict.h" #include /* for uint32_t */ #include #include #include #include /* for sprintf() */ #include "misc.h" #include "quantum_efficiency.h" #include "db.h" #include /* for gsl_strerror() */ static int initialized = 0; /* Global error string set when pmt_response_init() returns -1. */ char pmtr_err[256]; /* 2D lookup table for the PMT response as a function of angle and wavelength. */ static gsl_spline2d *spline_resp; static gsl_spline2d *spline_reflec; static gsl_interp_accel *xacc; static gsl_interp_accel *yacc; /* Angles (in degrees) that the PMT response lookup table is defined for. * Ideally these would have been stored with the table itself, but these are * hardcoded in SNOMAN. */ static double thetas[NUM_ANGLES] = { 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 48.0, 49.0, 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 67.0, 68.0, 69.0, 70.0, 71.0, 72.0, 73.0, 74.0, 75.0, 76.0, 77.0, 78.0, 79.0, 80.0, 81.0, 82.0, 83.0, 84.0, 85.0, 86.0, 87.0, 88.0, 89.0, }; /* Wavelengths (in nm) that the PMT response lookup table is defined for. * Ideally these would have been stored with the table itself, but these are * hardcoded in SNOMAN. */ static double wavelengths[NUM_WAVELENGTHS] = { 220.0, 230.0, 240.0, 250.0, 260.0, 270.0, 280.0, 290.0, 300.0, 310.0, 320.0, 330.0, 340.0, 350.0, 360.0, 370.0, 380.0, 390.0, 400.0, 410.0, 420.0, 430.0, 440.0, 450.0, 460.0, 470.0, 480.0, 490.0, 500.0, 510.0, 520.0, 530.0, 540.0, 550.0, 560.0, 570.0, 580.0, 590.0, 600.0, 610.0, 620.0, 630.0, 640.0, 650.0, 660.0, 670.0, 680.0, 690.0, 700.0, 710.0, }; /* PMT response as a function of angle and wavelength. */ static double resp[NUM_ANGLES*NUM_WAVELENGTHS]; /* PMT reflectivity as a function of angle and wavelength. */ static double reflec[NUM_ANGLES*NUM_WAVELENGTHS]; #define N 1000 /* Lower bound for cos(theta). */ static double xlo = 0.0; /* Upper bound for cos(theta). */ static double xhi = 1.0; /* Array holding the values of cos(theta). */ static double cos_thetas[N]; /* PMT response as a function of cos(theta) weighted by the Cerenkov spectrum * and the quantum efficiency. */ static double weighted_resp[N]; /* PMT reflectivity as a function of cos(theta) weighted by the Cerenkov * spectrum and the quantum efficiency. */ static double weighted_reflec[N]; /* Returns the probability that a photon is reflected as a function of the * cosine of the photon angle with respect to the PMT normal. * * Note: The angle should be relative to the negative of the PMT normal, i.e. a * photon incident perpendicular to the front of the PMT should have * * cos(theta) = 1. * */ double get_weighted_pmt_reflectivity(double cos_theta) { if (!initialized) { fprintf(stderr, "pmt response hasn't been initialized!\n"); exit(1); } return interp1d(cos_theta, cos_thetas, weighted_reflec, LEN(cos_thetas)); } /* Returns the probability that a photon is detected as a function of the * cosine of the photon angle with respect to the PMT normal. * * Note: The angle should be relative to the negative of the PMT normal, i.e. a * photon incident perpendicular to the front of the PMT should have * * cos(theta) = 1. * * Note: This does *not* include the PMT quantum efficiency. */ double get_weighted_pmt_response(double cos_theta) { if (!initialized) { fprintf(stderr, "pmt response hasn't been initialized!\n"); exit(1); } return interp1d(cos_theta, cos_thetas, weighted_resp, LEN(cos_thetas)); } double get_pmt_reflectivity(double wavelength, double theta) { /* Returns the probability that a photon is reflected as a function of the * photon angle with respect to the PMT normal (in radians) and the * wavelength (in nm). */ double deg; if (!initialized) { fprintf(stderr, "pmt response hasn't been initialized!\n"); exit(1); } /* Convert to degrees since the PMTR table is in degrees. */ deg = theta*180.0/M_PI; deg = fmod(deg,180.0); if (deg < 0.0) deg += 180.0; if (deg > thetas[NUM_ANGLES-1]) deg = thetas[NUM_ANGLES-1]; if (wavelength < wavelengths[0]) wavelength = wavelengths[0]; if (wavelength > wavelengths[NUM_WAVELENGTHS-1]) wavelength = wavelengths[NUM_WAVELENGTHS-1]; return gsl_spline2d_eval(spline_reflec, deg, wavelength, xacc, yacc); } double get_pmt_response(double wavelength, double theta) { /* Returns the probability that a photon is detected as a function of the * photon angle with respect to the PMT normal (in radians) and the * wavelength (in nm). * * Note: This does *not* include the PMT quantum efficiency. */ double deg, qe; if (!initialized) { fprintf(stderr, "pmt response hasn't been initialized!\n"); exit(1); } /* Convert to degrees since the PMTR table is in degrees. */ deg = theta*180.0/M_PI; deg = fmod(deg,180.0); if (deg < 0.0) deg += 180.0; if (deg > thetas[NUM_ANGLES-1]) deg = thetas[NUM_ANGLES-1]; if (wavelength < wavelengths[0]) wavelength = wavelengths[0]; if (wavelength > wavelengths[NUM_WAVELENGTHS-1]) wavelength = wavelengths[NUM_WAVELENGTHS-1]; /* The PMTR bank in SNOMAN included the effect of the PMT quantum * efficiency since it was used for the "grey disk" model. Therefore, * since we already account for the quantum efficiency it is necessary to * divide the response by the quantum efficiency. */ qe = get_quantum_efficiency(wavelength); /* If the quantum efficiency is zero, we have no way of knowing what the * response should be since it was multiplied by zero. Since for these * wavelengths the photon won't be detected, it doesn't really matter. */ if (qe == 0.0) return 0.0; return gsl_spline2d_eval(spline_resp, deg, wavelength, xacc, yacc)/qe; } static double gsl_pmt_reflectivity(double wavelength, void *params) { /* Returns the probability that a photon is reflected as a function of * wavelength for a specific angle weighted by the quantum efficiency and * the Cerenkov spectrum. */ double qe, cos_theta; cos_theta = ((double *) params)[0]; qe = get_quantum_efficiency(wavelength); return qe*get_pmt_reflectivity(wavelength,acos(cos_theta))/pow(wavelength,2); } static double gsl_pmt_response(double wavelength, void *params) { /* Returns the probability that a photon is detected as a function of * wavelength for a specific angle weighted by the quantum efficiency and * the Cerenkov spectrum. */ double qe, cos_theta; cos_theta = ((double *) params)[0]; qe = get_quantum_efficiency(wavelength); return qe*get_pmt_response(wavelength,acos(cos_theta))/pow(wavelength,2); } static double gsl_cerenkov(double wavelength, void *params) { /* Returns the quantum efficiency multiplied by the Cerenkov spectrum. */ double qe; qe = get_quantum_efficiency(wavelength); return qe/pow(wavelength,2); } int pmt_response_init(dict *db) { int i, j; float *pmtr; double norm; double result, error; size_t nevals; int status; gsl_integration_cquad_workspace *w; gsl_function F; double params[1]; spline_resp = gsl_spline2d_alloc(gsl_interp2d_bilinear, NUM_ANGLES, NUM_WAVELENGTHS); spline_reflec = gsl_spline2d_alloc(gsl_interp2d_bilinear, NUM_ANGLES, NUM_WAVELENGTHS); xacc = gsl_interp_accel_alloc(); yacc = gsl_interp_accel_alloc(); pmtr = (float *) get_bank(db, "PMTR", 1); if (!pmtr) { sprintf(pmtr_err, "failed to load PMTR bank\n"); return -1; } for (i = 0; i < NUM_ANGLES; i++) { for (j = 0; j < NUM_WAVELENGTHS; j++) { gsl_spline2d_set(spline_resp, resp, i, j, pmtr[30+KPMTR_RESP+i+j*NUM_ANGLES]); gsl_spline2d_set(spline_reflec, reflec, i, j, pmtr[30+KPMTR_REFLEC+i+j*NUM_ANGLES]); } } gsl_spline2d_init(spline_resp, thetas, wavelengths, resp, NUM_ANGLES, NUM_WAVELENGTHS); gsl_spline2d_init(spline_reflec, thetas, wavelengths, reflec, NUM_ANGLES, NUM_WAVELENGTHS); initialized = 1; w = gsl_integration_cquad_workspace_alloc(100); F.function = &gsl_cerenkov; F.params = params; status = gsl_integration_cquad(&F, 200, 800, 0, 1e-2, w, &norm, &error, &nevals); if (status) { fprintf(stderr, "error integrating cerenkov distribution: %s\n", gsl_strerror(status)); exit(1); } for (i = 0; i < LEN(cos_thetas); i++) { cos_thetas[i] = xlo + (xhi-xlo)*i/(LEN(cos_thetas)-1); } F.function = &gsl_pmt_response; for (i = 0; i < LEN(cos_thetas); i++) { params[0] = cos_thetas[i]; status = gsl_integration_cquad(&F, 200, 800, 0, 1e-2, w, &result, &error, &nevals); weighted_resp[i] = result/norm; if (status) { fprintf(stderr, "error integrating cerenkov distribution: %s\n", gsl_strerror(status)); exit(1); } } F.function = &gsl_pmt_reflectivity; for (i = 0; i < LEN(cos_thetas); i++) { params[0] = cos_thetas[i]; status = gsl_integration_cquad(&F, 200, 800, 0, 1e-2, w, &result, &error, &nevals); weighted_reflec[i] = result/norm; if (status) { fprintf(stderr, "error integrating cerenkov distribution: %s\n", gsl_strerror(status)); exit(1); } } gsl_integration_cquad_workspace_free(w); return 0; } void pmt_response_free(void) { if (spline_resp) gsl_spline2d_free(spline_resp); if (spline_reflec) gsl_spline2d_free(spline_reflec); if (xacc) gsl_interp_accel_free(xacc); if (yacc) gsl_interp_accel_free(yacc); } 267'>267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334