#include "misc.h" #include #include /* for size_t */ double kahan_sum(double *x, size_t n) { /* Returns the sum of the elements of `x` using the Kahan summation algorithm. * * See https://en.wikipedia.org/wiki/Kahan_summation_algorithm. */ size_t i; double sum, c, y, t; sum = 0.0; c = 0.0; for (i = 0; i < n; i++) { y = x[i] - c; t = sum + y; c = (t - sum) - y; sum = t; } return sum; } double interp1d(double x, double *xp, double *yp, size_t n) { /* A fast interpolation routine which assumes that the values in `xp` are * evenly spaced. * * If x < xp[0] returns yp[0] and if x > xp[n-1] returns yp[n-1]. */ size_t i; if (x < xp[0]) return yp[0]; if (x > xp[n-1]) return yp[n-1]; i = (x-xp[0])/(xp[1]-xp[0]); return yp[i] + (yp[i+1]-yp[i])*(x-xp[i])/(xp[i+1]-xp[i]); } int isclose(double a, double b, double rel_tol, double abs_tol) { /* Returns 1 if a and b are "close". This algorithm is taken from Python's * math.isclose() function. * * See https://www.python.org/dev/peps/pep-0485/. */ return fabs(a-b) <= fmax(rel_tol*fmax(fabs(a),fabs(b)),abs_tol); } int allclose(double *a, double *b, size_t n, double rel_tol, double abs_tol) { /* Returns 1 if all the elements of a and b are "close". This algorithm is * taken from Python's math.isclose() function. * * See https://www.python.org/dev/peps/pep-0485/. */ size_t i; for (i = 0; i < n; i++) { if (!isclose(a[i],b[i],rel_tol,abs_tol)) return 0; } return 1; } double logsumexp(double *a, size_t n) { /* Returns the log of the sum of the exponentials of the array `a`. * * This function is designed to reduce underflow when the exponentials of * `a` are very small, for example when computing probabilities. */ size_t i; double amax, sum; amax = a[0]; for (i = 0; i < n; i++) { if (a[i] > amax) amax = a[i]; } sum = 0.0; for (i = 0; i < n; i++) { sum += exp(a[i]-amax); } sum = log(sum); return amax + sum; } double norm(double x, double mu, double sigma) { /* Returns the PDF for a gaussian random variable with mean `mu` and * standard deviation `sigma`. */ return exp(-pow(x-mu,2)/(2*pow(sigma,2)))/(sqrt(2*M_PI)*sigma); } double norm_cdf(double x, double mu, double sigma) { /* Returns the CDF for a gaussian random variable with mean `mu` and * standard deviation `sigma`. */ return erfc(-(x-mu)/(sqrt(2)*sigma))/2.0; }