\documentclass{article} \usepackage{amsmath} % for \text command \usepackage{fullpage} \usepackage{tikz} \usepackage{hyperref} \usepackage{amsfonts} \newcommand*\diff{\mathrm{d}} \usetikzlibrary{shapes} \author{Anthony LaTorre} \date{\today} \title{Searching for Dark Matter with the Sudbury Neutrino Observatory} \begin{document} \maketitle \section{Introduction} \section{Estimating the Event rate in the SNO detector} The event rate of self destructing dark matter events, $R$, in the SNO detector is given by first integrating over the detector. \begin{equation} R = \int_\mathrm{SNO} \mathrm{d}^3r \, R(r) \end{equation} Next, we integrate over the earth where the dark matter annihilates: \begin{equation} R = \int_\mathrm{SNO} \mathrm{d}^3r \, \int_{r'} \mathrm{d}^3r' R(r') \mathrm{P}(\text{detect at r} | \text{DM scatters at r'}) \end{equation} where we have assumed above that the dark matter annihilates immediately after scattering. The event rate for scattering at a position $r'$ in the earth is: \begin{equation} R(r') = \Phi(r') \eta(r') \sigma(r') \end{equation} where $\Phi(r')$ is the flux at $r'$, $\eta(r')$ is the number density of scatterers at $r'$, and $\sigma$ is the cross section for the dark matter to scatter and annihilate. In general this will be a sum over the elemental composition of the earth at $r'$, but for notational simplicity we will assume a single cross section. We will also assume that the cross section is small enough that the flux is essentially constant over the whole earth so that the rate may be written as: \begin{equation} R(r') = \Phi \eta(r') \sigma(r'). \end{equation} The rate may then be written as: \begin{equation} R = \Phi \int_\mathrm{SNO} \mathrm{d}^3r \, \int_{r'} \mathrm{d}^3r' \, \eta(r') \sigma(r') \mathrm{P}(\text{detect at r} | \text{DM scatters at r'}) \end{equation} If we assume that the probability of detecting the dark matter is uniform across the SNO detector we may write it as: \begin{equation} R = \Phi \int_\mathrm{SNO} \mathrm{d}^3r \, \int_{r'} \mathrm{d}^3r' \, \eta(r') \sigma(r') \mathrm{P}(\text{detect at SNO} | \text{DM scatters at r'}) \end{equation} This assumption is pretty well motivated since for most values of the mediator decay length the probability will be uniform across the detector. The only value for which it might not be a good approximation is if the mediator decay length is on the order of the detector radius in which case DM scattering in the rock of the cavity walls might have a higher event rate at the edge of the detector. Since the integrand no longer depends on $r$, we may write it as: \begin{equation} R = \Phi V_\text{fiducial} \int_{r'} \mathrm{d}^3r' \, \eta(r') \sigma(r') \mathrm{P}(\text{detect at SNO} | \text{DM scatters at r'}) \end{equation} where $V_\text{fiducial}$ is the fiducial volume of the detector. The probability that the mediator $V$ is emitted in a direction $\theta$ and travels a distance $r$ in a spherical coordinate system centered on $r'$ may be written as: \begin{equation} f(r,\theta) = \frac{\sin\theta}{4\pi}\frac{e^{-r/L_V}}{L_V} \end{equation} To transform this probability distribution to the coordinate system centered on the SNO detector we first transform it to a cartesian coordinate system: \begin{align} f(r,\theta) &= \frac{\sin\theta}{4\pi}\frac{e^{-r/L_V}}{L_V}\frac{1}{r^2sin\theta} \\ &= \frac{1}{4\pi r^2}\frac{e^{-r/L_V}}{L_V} \end{align} Then, the distribution is translated to the center of the detector, which doesn't change the form since the radial coordinate $r$ is the same in both coordinate systems. Finally, we switch back into spherical coordinates: \begin{align} f(r,\theta') &= \frac{1}{4\pi r^2}\frac{e^{-r/L_V}}{L_V}r^2\sin\theta' \\ &= \frac{1}{4\pi}\frac{e^{-r/L_V}}{L_V}\sin\theta' \end{align} where $\theta'$ is the polar angle in the SNO coordinate system. We can now write the rate as: \begin{align} R &= \Phi V_\text{fiducial} \int_r \mathrm{d}r \, \int_\theta \mathrm{d}\theta \, \int_\phi \mathrm{d}\phi \, \eta(r,\theta,\phi) \sigma(r,\theta,\phi) \frac{1}{4\pi}\frac{e^{-r/L_V}}{L_V}\sin\theta \end{align} We now assume that the number density of scatterers $\eta$ and the cross section $\sigma$ are independent of the position in the earth. This is a good approximation for certain values of $L_V$ since the integral will be dominated by a single material. For example, if the mediator decay length $L_V$ is approximately 1 meter, then the vast majority of the events in the detector will be caused by dark matter scattering off of water. Similarly if the mediator decay length is approximately 1 km then the majority of the events in the detector will be caused by the dark matter scattering off of the norite rock surrounding the detector. With this approximation, the rate may be written: \begin{align} R &= \Phi V_\text{fiducial} \eta \sigma \int_r \mathrm{d}r \, \int_\theta \mathrm{d}\theta \, \int_\phi \mathrm{d}\phi \, \frac{1}{4\pi}\frac{e^{-r/L_V}}{L_V}\sin\theta \\ &= \Phi V_\text{fiducial} \eta \sigma \int_r \mathrm{d}r \, \frac{1}{2}\frac{e^{-r/L_V}}{L_V} \int_\theta \mathrm{d}\theta \, \sin\theta \end{align} The $\theta$ integral goes from $\theta_\text{min}$ to $\pi$: \begin{align} R &= \Phi V_\text{fiducial} \eta \sigma \int_r \mathrm{d}r \, \frac{1}{2}\frac{e^{-r/L_V}}{L_V} \int_{\theta_\text{min}}^\pi \mathrm{d}\theta \, \sin\theta \end{align} where $\theta_\text{min}$ is equal to: \begin{equation} \theta_\text{min} =% \begin{cases} 0 & \text{if } r < \text{depth} \\ \pi - \arccos\left(\frac{\text{depth}^2 + r^2 - 2R\text{depth}}{2r(R-\text{depth})}\right) & \text{if } \text{depth} < r < 2R-\text{depth} \\ \end{cases} \end{equation} where $R$ is the radius of the earth and $\text{depth}$ is the distance from the surface of the earth to the SNO detector. \section{Cross Section} In \cite{grossman2017} the differential scattering cross section for dark matter off a nucleus is calculated as \begin{equation} \frac{\diff \sigma_\text{scatter}}{\diff q^2} = \frac{g_V^2 \epsilon^2 e^2}{4\pi v^2 (q^2 + m_V^2)^2} |F_D(q^2)|^2 Z^2 F^2(q), \end{equation} where $q$ is the momentum transferred, $g_V$ and $\epsilon$ are coupling constants (FIXME: is this true?), $v$ is the velocity of the dark matter particle, $m_V$ is the mass of the mediator, $F_D(q^2)$ is a form factor for the dark matter to transition from a high angular momentum state to a lower angular momentum state, $Z$ is the atomic number of the nucleus, and $F^2(q)$ is a nuclear form factor. In the limit of low momentum transfer, the cross section is approximately \begin{equation} \frac{\diff \sigma_\text{scatter}}{\diff q^2} \simeq \frac{g_V^2 \epsilon^2 e^2}{4\pi v^2 m_V^4} |F_D(q^2)|^2 Z^2 F^2(q). \end{equation} For existing direct detection dark matter experiments, the relevant cross section is (FIXME: is this true?) \begin{equation} \frac{\diff \sigma_\text{scatter}}{\diff q^2} \simeq \frac{g_V^2 \epsilon^2 e^2}{4\pi v^2 m_V^4} Z^2 F^2(q). \end{equation} A standard cross section can be defined as the total cross section in the zero momentum limit\cite{pepin2016} \begin{align} \sigma_0 &= \int_0^{4\mu_T^2 v^2} \frac{\diff \sigma_\text{scatter}}{\diff q^2}\bigg\rvert_{q \rightarrow 0} \diff q^2 \\ &= \frac{\mu_T^2 g_V^2 \epsilon^2 e^2}{\pi m_V^4} Z^2, \end{align} where $\mu_T$ is the reduced mass of the WIMP and target nucleus. Since different experiments use different detector targets, it is also useful to define a standard cross section, $\sigma_p$ which is independent of the nuclear target: \begin{equation} \sigma_p = \left(\frac{\mu_p}{\mu_T}\frac{1}{Z}\right)^2 \sigma_0. \end{equation} The direct detection cross section is then: \begin{equation} \frac{\diff \sigma_\text{scatter}}{\diff q^2} \simeq \frac{1}{4 \mu_p^2 v^2} \sigma_p Z^2 F^2(q). \end{equation} and the cross section for the dark matter to annihilate is: \begin{equation} \frac{\diff \sigma_\text{scatter}}{\diff q^2} \simeq \frac{1}{4 \mu_p^2 v^2} \sigma_p |F_D(q)|^2 Z^2 F^2(q). \end{equation} \subsection{Nuclear Form Factor} The nuclear form factor, $F(q)$, characterizes the loss of coherence as the de Broglie wavelength of the WIMP approaches the radius of the nucleus\cite{caldwell2015}. The most commonly used form factor calculation used in the direct detection community is that of Helm which is given by: \begin{equation} F(q) = 3\frac{j_1(q r_1)}{q r_1} e^{-\frac{(q s)^2}{2}}, \end{equation} where $j_1$ is the spherical bessel function of the first order, $s$ is a measure of the nuclear skin thickness, and $r_1$ is a measure of the nuclear radius\cite{pepin2016}. The values used for these constants were \begin{align} s &= 0.9 \text{ fm} \\ a &= 0.52 \text{ fm} \\ c &= 1.23 A^\frac{1}{3} - 0.60 \text{ fm} \\ r_1 &= \sqrt{c^2 + \frac{7}{3}\pi^2 a^2 - 5 s^2} \end{align} \begin{figure} \centering \begin{tikzpicture}[scale=0.1] % earth \draw [thick,domain=120:150] plot[smooth] ({200*cos(\x)},{200*sin(\x)}); \begin{scope}[shift={(-100,100)},rotate=45] % interaction \node[star,star points=9,draw] at (20,20){}; % acrylic vessel \draw [thick,domain={90+asin(75/600)}:{360+90-asin(75/600)}] plot[smooth] ({6*cos(\x)},{6*sin(\x)}); \draw [thick] ({6*cos(90+asin(75/600))},{6*sin(90+asin(75/600))}) -- ({6*cos(90+asin(75/600))},{6*sin(90+asin(75/600))+7.5}) -- ({6*cos(90+asin(75/600))+2*0.75},{6*sin(90+asin(75/600))+7.5}) -- ({6*cos(90+asin(75/600))+2*0.75},{6*sin(90+asin(75/600))}); % PSUP \draw [domain=0:360] plot ({8.89*cos(\x)},{8.89*sin(\x)}); % cavity \draw (-9.5,-10.5) -- (-10.6,-10.5+5.6) -- (-10.6,-10.5+14.93) -- (-9.5,-10.5+30) -- (9.5,-10.5+30) -- (10.6,-10.5+14.93) -- (10.6,-10.5+5.6) -- (9.5,-10.5) -- (-9.5,-10.5); \draw[->,ultra thick] (-25,0) -- (25,0) node[right]{$x$}; \draw[->,ultra thick] (0,-25) -- (0,25) node[right]{$y$}; \end{scope} \end{tikzpicture} \end{figure} \section{Event Reconstruction} In order to reconstruct the physical parameters associated with an event we compute a likelihood for that event given a proposed energy, position, direction, and initial time. The likelihood may be written as: \begin{equation} \label{likelihood} \mathcal{L}(E, \vec{x}, \vec{v}, t_0) = P(\vec{q}, \vec{t} | E, \vec{x}, \vec{v}, t_0) \end{equation} where $E$, $\vec{x}$, $\vec{v}$ represent the initial particle's kinetic energy, position, and direction respectively, $t_0$ represents the initial time of the event, $\vec{q}$ is the charge seen by each PMT, and $\vec{t}$ is the time recorded by each PMT. In general the right hand side of Equation~\ref{likelihood} is not factorable since for particle tracks which scatter there will be correlations between the PMT hits. However, to make the problem analytically tractable, we assume that the probability of each PMT being hit is approximately independent of the others. With this assumption we can factor the right hand side of the likelihood as: \begin{equation} \mathcal{L}(E, \vec{x}, \vec{v}, t_0) = \prod_i P(\text{not hit} | E, \vec{x}, \vec{v}, t_0) \prod_j P(\text{hit}, q_j, t_j | E, \vec{x}, \vec{v}, t_0) \end{equation} where the first product is over all PMTs which weren't hit and the second product is over all of the hit PMTs. If we introduce the variable $n$ which represents the number of photoelectrons detected we can write the likelihood as: \begin{equation} \mathcal{L}(E, \vec{x}, \vec{v}, t_0) = \prod_i P(n = 0 | E, \vec{x}, \vec{v}, t_0) \prod_j \sum_{n = 1}^{\infty} P(n, q_j, t_j | E, \vec{x}, \vec{v}, t_0) \end{equation} We can factor the right hand side of the likelihood as: \begin{equation} \mathcal{L}(E, \vec{x}, \vec{v}, t_0) = \prod_i P(n = 0 | E, \vec{x}, \vec{v}, t_0) \prod_j \sum_{n = 1}^{\infty} P(q_j, t_j | n, E, \vec{x}, \vec{v}, t_0) P(n | E, \vec{x}, \vec{v}, t_0) \end{equation} If we now assume that the charge and time observed at a given PMT are independent we can write the likelihood as: \begin{equation} \mathcal{L}(E, \vec{x}, \vec{v}, t_0) = \prod_i P(n = 0 | E, \vec{x}, \vec{v}, t_0) \prod_j \sum_{n = 1}^{\infty} P(q_j | n, E, \vec{x}, \vec{v}, t_0) P(t_j | n, E, \vec{x}, \vec{v}, t_0) P(n | E, \vec{x}, \vec{v}, t_0) \end{equation} Since there are many photons produced in each event each of which has a small probability to hit a given PMT, we will assume that the probability of detecting $n$ photons at a given PMT is poisson distributed, i.e. \begin{equation} P(n | E, \vec{x}, \vec{v}, t_0) = e^{-\mu} \frac{\mu^n}{n!} \end{equation} We can therefore write the likelihood as: \begin{equation} \mathcal{L}(E, \vec{x}, \vec{v}, t_0) = \prod_i e^{-\mu_i} \prod_j \sum_{n = 1}^{\infty} P(q_j | n, E, \vec{x}, \vec{v}, t_0) P(t_j | n, E, \vec{x}, \vec{v}, t_0) e^{-\mu_j} \frac{\mu_j^n}{n!} \end{equation} where $\mu_i$ is the expected number of photoelectrons detected at the ith PMT (given an initial particle's energy, position, and direction). First, we'll calculate the expected number of photoelectrons for a single non-showering track which undergoes multiple scattering through small angles. In this case, we can calculate the expected number of photoelectrons as: \begin{equation} \mu_i = \int_x \diff x \int_\lambda \diff \lambda \frac{\diff^2 N}{\diff x \diff \lambda} P(\text{detected} | E, x, v) \end{equation} where $x$ is the position along the track and $\lambda$ is the wavelength of the light. If the particle undergoes many small angle Coulomb scatters, the net angular displacement of the particle after a distance $x$ will be a Gaussian distribution by the central limit theorem\cite{pdg2017}. The distribution of the net angular displacement at a distance $x$ along the track is then given by\footnote{This distribution will be correlated between different points along the track.}: \begin{equation} f(\theta,\phi) = \frac{\theta}{2\pi\theta_0^2}e^{-\frac{\theta^2}{2\theta_0^2}} \end{equation} where \begin{equation} \theta_0 = \frac{13.6 \text{ MeV}}{\beta c p}z\sqrt{\frac{x}{X_0}}\left[1 + 0.038\ln\left(\frac{x z^2}{X_0 \beta^2}\right)\right] \end{equation} where $p$, $\beta c$, and $z$ are the momentum, velocity, and charge of the particle, and $X_0$ is the radiation length of the particle\cite{pdg2017}. Now, we integrate over the angular displacement of the track around the original velocity: \begin{align} \mu_i &= \int_x \diff x \int_\lambda \diff \lambda \frac{\diff^2 N}{\diff x \diff \lambda} \int_\theta \diff \theta \int_\phi \diff \phi P(\text{detected} | \theta, \phi, E, x, v) P(\theta, \phi | E, x, v) \\ \mu_i &= \int_x \diff x \int_\lambda \diff \lambda \frac{\diff^2 N}{\diff x \diff \lambda} \int_\theta \diff \theta \int_\phi \diff \phi P(\text{detected} | \theta, \phi, E, x, v) f(\theta,\phi) \end{align} The probability of being detected can be factored into several different compontents: \begin{align} \mu_i &= \int_x \diff x \int_\lambda \diff \lambda \frac{\diff^2 N}{\diff x \diff \lambda} \int_\theta \diff \theta \int_\phi \diff \phi P(\text{emitted towards PMT i} | \theta, \phi, E, x, v) f(\theta,\phi) P(\text{not scattered or absorbed} | \lambda, E, x, v) \epsilon(\eta) \mathrm{QE}(\lambda) \\ \label{eq:mui} \mu_i &= \int_x \diff x \int_\lambda \diff \lambda \frac{\diff^2 N}{\diff x \diff \lambda} P(\text{not scattered or absorbed} | \lambda, E, x, v) \epsilon(\eta) \mathrm{QE}(\lambda) \int_\theta \diff \theta \int_\phi \diff \phi P(\text{emitted towards PMT i} | \theta, \phi, E, x, v) f(\theta,\phi) \end{align} where $\eta$ is the angle between the vector connecting the track position $x$ to the PMT position and the normal vector to the PMT, $\epsilon(\eta)$ is the collection efficiency, and $\mathrm{QE}(\lambda)$ is the quantum efficiency of the PMT. The probability that a photon is emitted directly towards a PMT is given by a delta function (we make the assumption here that the probability is uniform across the face of the PMT): \begin{equation} P(\text{emitted towards PMT i} | \theta, \phi, E, x, v) = \delta\left(\frac{1}{n(\lambda)\beta} - \cos\theta'(\theta,\phi,x)\right) \frac{\Omega(x)}{4\pi} \end{equation} where $\theta'$ is the angle between the track and the PMT and $\Omega(x)$ is the solid angle subtended by the PMT. In a coordinate system with the z axis aligned along the original particle velocity and with the PMT in the x-z plane, the angle $\theta'$ is defined by: \begin{equation} \cos\theta' = \sin\theta\cos\phi\sin\theta_1 + \cos\theta\cos\theta_1 \end{equation} where $\theta_1$ is the angle between the PMT and the original particle velocity. We can now solve the integral on the right hand side of Equation~\ref{eq:mui} as: \begin{align} P(\text{emitted towards PMT i}) &= \int_\theta \diff \theta \int_\phi \diff \phi \delta\left(\frac{1}{n(\lambda)\beta} - \cos\theta'(\theta,\phi,x)\right) \frac{\Omega(x)}{4\pi} \frac{\theta}{2\pi\theta_0^2}e^{-\frac{\theta^2}{2\theta_0^2}} \\ P(\text{emitted towards PMT i}) &= \frac{\Omega(x)}{4\pi} \frac{1}{2\pi\theta_0^2}\int_\theta \diff \theta \int_\phi \diff \phi \delta\left(\frac{1}{n(\lambda)\beta} - \cos\theta'(\theta,\phi,x)\right) \theta e^{-\frac{\theta^2}{2\theta_0^2}} \\ P(\text{emitted towards PMT i}) &= \frac{\Omega(x)}{4\pi} \frac{1}{2\pi\theta_0^2}\int_\theta \diff \theta \int_\phi \diff \phi \delta\left(\frac{1}{n(\lambda)\beta} - \sin\theta\cos\phi\sin\theta_1 - \cos\theta\cos\theta_1\right) \theta e^{-\frac{\theta^2}{2\theta_0^2}} \end{align} We now assume $\theta$ is small (which should be valid for small angle scatters), so that we can rewrite the delta function as: \begin{align} P(\text{emitted towards PMT i}) &= \frac{\Omega(x)}{4\pi} \frac{1}{2\pi\theta_0^2}\int_\theta \diff \theta \int_\phi \diff \phi \delta\left(\frac{1}{n(\lambda)\beta} - \theta\cos\phi\sin\theta_1 - \cos\theta_1\right) \theta e^{-\frac{\theta^2}{2\theta_0^2}} \end{align} We can rewrite the delta function and solve the integral as: \begin{align} P(\text{emitted towards PMT i}) &= \frac{\Omega(x)}{4\pi} \frac{1}{2\pi\theta_0^2}\int_\theta \diff \theta \int_\phi \diff \phi \frac{1}{\left|\cos\phi\sin\theta_1\right|}\delta\left(\theta - \frac{\frac{1}{n(\lambda)\beta}-\cos\theta_1}{\cos\phi\sin\theta_1}\right) \theta e^{-\frac{\theta^2}{2\theta_0^2}} \\ &= \frac{\Omega(x)}{4\pi} \frac{1}{2\pi\theta_0^2} \frac{1}{\left|\sin\theta_1\right|} \int_\phi \diff \phi \frac{1}{\left|\cos\phi\right|} \int_\theta \diff \theta \delta\left(\theta - \frac{\frac{1}{n(\lambda)\beta}-\cos\theta_1}{\cos\phi\sin\theta_1}\right) \theta e^{-\frac{\theta^2}{2\theta_0^2}} \\ &= \frac{\Omega(x)}{4\pi} \frac{1}{2\pi\theta_0^2} \frac{1}{\left|\sin\theta_1\right|} \int_\phi \diff \phi \frac{1}{\left|\cos\phi\right|}\frac{\frac{1}{n(\lambda)\beta}-\cos\theta_1}{\cos\phi\sin\theta_1}H\left(\frac{\frac{1}{n(\lambda)\beta}-\cos\theta_1}{\cos\phi\sin\theta_1}\right)e^{-\frac{1}{2\theta_0^2}\left(\frac{\frac{1}{n(\lambda)\beta}-\cos\theta_1}{\cos\phi\sin\theta_1}\right)^2} \\ &= \frac{\Omega(x)}{4\pi} \frac{1}{2\pi\theta_0^2} \frac{1}{\left|\sin\theta_1\right|}\sqrt{2\pi}\theta_0 e^{-\frac{1}{2\theta_0^2}\left(\frac{\frac{1}{n(\lambda)\beta}-\cos\theta_1}{\sin\theta_1}\right)^2} \\ &= \frac{\Omega(x)}{4\pi} \frac{1}{\sqrt{2\pi}\theta_0} \frac{1}{\left|\sin\theta_1\right|} e^{-\frac{1}{2\theta_0^2}\left(\frac{\frac{1}{n(\lambda)\beta}-\cos\theta_1}{\sin\theta_1}\right)^2}. \end{align} To simplify this expression we can write \begin{equation} P(\text{emitted towards PMT i}) = \frac{\Omega(x)}{4\pi} \frac{1}{\sqrt{2\pi}\theta_0} \frac{1}{\left|\sin\theta_1\right|} e^{-\frac{\Delta^2(\lambda)}{2\theta_0^2}} \end{equation} where \begin{equation} \Delta(\lambda) = \frac{\frac{1}{n(\lambda)\beta}-\cos\theta_1}{\sin\theta_1} \end{equation} Plugging this back into Equation~\ref{eq:mui} \begin{align} \label{eq:mui-exact} \mu_i &= \frac{1}{\sqrt{2\pi}\theta_0} \int_x \diff x \frac{\Omega(x)}{4\pi} \frac{1}{\left|\sin\theta_1\right|} \epsilon(\eta) \int_\lambda \diff \lambda \frac{\diff^2 N}{\diff x \diff \lambda} P(\text{not scattered or absorbed} | \lambda, E, x, v) \mathrm{QE}(\lambda) e^{-\frac{\Delta^2(\lambda)}{2\theta_0^2}} \end{align} Ideally we would just evaluate this double integral for each likelihood call, however the double integral is too computationally expensive to perform for every likelihood call (FIXME: is this true?). We therefore assume that the second integral will be dominated by the Bessel function which has a singularity when it's argument is zero, and rewrite Equation~\ref{eq:mui-exact} as: \begin{align} \mu_i &= 2 \frac{1}{\sqrt{2\pi}\theta_0} \int_x \diff x \Omega(x) \frac{1}{\left|\sin\theta_1\right|} \epsilon(\eta) P(\text{not scattered or absorbed} | \lambda_0, E, x, v) \mathrm{QE}(\lambda_0) e^{-\frac{\Delta^2(\lambda_0)}{4\theta_0^2}} \int_\lambda \diff \lambda \frac{\diff^2 N}{\diff x \diff \lambda} K_0\left(\frac{\Delta^2(\lambda)}{4\theta_0^2}\right) \end{align} where $\lambda_0$ is the wavelength at which $\Delta(\lambda) = 0$. For small values of $\Delta$, the Bessel function may be approximated as: \begin{equation} K_0(x) \simeq -\log(x) + \log(2) - \gamma \end{equation} We may therefore approximate the expected charge as \begin{multline} \label{eq:mui-approx} \mu_i = 2 \frac{1}{\sqrt{2\pi}\theta_0} \int_x \diff x \Omega(x) \frac{1}{\left|\sin\theta_1\right|} \epsilon(\eta) P(\text{not scattered or absorbed} | \lambda_0, E, x, v) \mathrm{QE}(\lambda_0) e^{-\frac{\Delta^2(\lambda_0)}{4\theta_0^2}} \\ \int_\lambda \diff \lambda \frac{\diff^2 N}{\diff x \diff \lambda} \left(-\log\left(\frac{\Delta^2(\lambda)}{4\theta_0^2}\right) + \log(2) - \gamma\right) \end{multline} The number of Cerenkov photons produced per unit length and per unit wavelength is given by\cite{pdg2017} \begin{equation} \frac{\diff^2 N}{\diff x \diff \lambda} = \frac{2\pi\alpha z^2}{\lambda^2}\left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right) \end{equation} where $\alpha$ is the fine-structure constant and $z$ is the charge of the particle in units of the electron charge. We can therefore write the second integral in Equation~\ref{eq:mui-approx} as \begin{align} \int_\lambda \diff \lambda \frac{\diff^2 N}{\diff x \diff \lambda} \left(-\log\left(\frac{\Delta^2(\lambda)}{4\theta_0^2}\right) + \log(2) - \gamma\right) &= 2\pi\alpha z^2 \int_\lambda \diff \lambda \frac{1}{\lambda^2}\left(1 - \frac{1}{\beta^2 n^2(\lambda)}\right) \left(-\log\left(\frac{\Delta^2(\lambda)}{4\theta_0^2}\right) + \log(2) - \gamma\right) \\ \label{eq:lambda} &\simeq 2\pi\alpha z^2 \left(1 - \frac{1}{\beta^2 n^2(\lambda_0)}\right) \int_\lambda \diff \lambda \frac{1}{\lambda^2}\left(-\log\left(\frac{\Delta^2(\lambda)}{4\theta_0^2}\right) + \log(2) - \gamma\right) \end{align} Since the $\Delta$ function only depends on the wavelength through the index which depends weakly on the wavelength, we can approximate the index of refraction as: \begin{equation} n(\lambda) \simeq a + \frac{b}{\lambda^2}. \end{equation} The integral in Equation~\ref{eq:lambda} may then be solved analytically \begin{multline} \int_{\lambda_1}^{\lambda_2} \diff \lambda \frac{1}{\lambda^2}\left(-\log\left(\frac{\Delta^2(\lambda)}{4\theta_0^2}\right) + \log(2) - \gamma\right) = \left[\log(4\theta_0^2) + \log(\sin^2\theta_1) + \log(2) - \gamma\right]\left(\frac{1}{\lambda_1}-\frac{1}{\lambda_2}\right) + \\ \left.\left(-4\sqrt{\frac{a}{b}}\arctan\left(\sqrt{\frac{a}{b}}\lambda\right) + 4\sqrt{\frac{1+a\Delta_0}{b\Delta_0}}\arctan\left(\sqrt{\frac{1+a\Delta_0}{b\Delta_0}}\lambda\right) - \frac{1}{\lambda}\log\left[\left(\Delta_0+\frac{\lambda^2}{b+a\lambda^2}\right)^2\right]\right)\right|_{\lambda_1}^{\lambda_2} \end{multline} where $\lambda_1$ and $\lambda_2$ are chosen to cover the range where the quantum efficiency is non-zero, typically between 300 nm and 600 nm. For simplicity we will write this previous expression as $f(x)$ \begin{multline} f(x) = \left[\log(4\theta_0^2) + \log(\sin^2\theta_1) + \log(2) - \gamma\right]\left(\frac{1}{\lambda_1}-\frac{1}{\lambda_2}\right) + \\ \left.\left(-4\sqrt{\frac{a}{b}}\arctan\left(\sqrt{\frac{a}{b}}\lambda\right) + 4\sqrt{\frac{1+a\Delta_0}{b\Delta_0}}\arctan\left(\sqrt{\frac{1+a\Delta_0}{b\Delta_0}}\lambda\right) - \frac{1}{\lambda}\log\left[\left(\Delta_0+\frac{\lambda^2}{b+a\lambda^2}\right)^2\right]\right)\right|_{\lambda_1}^{\lambda_2} \end{multline} We can now write Equation~\ref{eq:mui-approx} as \begin{equation} \mu_i = 2 \frac{1}{\sqrt{2\pi}\theta_0} 2\pi\alpha z^2 \int_x \diff x \Omega(x) \frac{1}{\left|\sin\theta_1\right|} \epsilon(\eta) P(\text{not scattered or absorbed} | \lambda_0, E, x, v) \mathrm{QE}(\lambda_0) e^{-\frac{\Delta^2(\lambda_0)}{4\theta_0^2}} \left(1 - \frac{1}{\beta^2 n^2(\lambda_0)}\right) f(x) \end{equation} The probability that a photon travels to the PMT without being scattered or absorbed can be calculated as follows \begin{align} P(\text{not scattered or absorbed} | \lambda, x) &= P(\text{not scattered} | \lambda, x) P(\text{not absorbed} | \lambda, x) \\ &= \int_l^\infty\frac{1}{s(\lambda)}e^{-\frac{x}{s(\lambda)}}\int_l^\infty\frac{1}{a(\lambda)}e^{-\frac{x}{a(\lambda)}} \\ &= e^{-\frac{l}{s(\lambda) + a(\lambda)}} \end{align} where $l$ is the distance to the PMT from the position $x$, $s(\lambda)$ is the scattering length, and $a(\lambda)$ is the absorption length. We can therefore write the expected charge as \begin{equation} \mu_i = 2 \frac{1}{\sqrt{2\pi}\theta_0} 2\pi\alpha z^2 \int_x \diff x \Omega(x) \frac{1}{\left|\sin\theta_1\right|} \epsilon(\eta) e^{-\frac{l(x)}{s(\lambda) + a(\lambda)}} \mathrm{QE}(\lambda_0) e^{-\frac{\Delta^2(\lambda_0)}{4\theta_0^2}} \left(1 - \frac{1}{\beta^2 n^2(\lambda_0)}\right) f(x) \end{equation} The last integral is calculated numerically when the likelihood is evaluated. We now return to the likelihood and calculate the probability of observing a given time. In principle, this depends on the number of photons hitting a PMT since the PMT hit will only register the \emph{first} photoelectron which crosses threshold. However, since this is expected to be a small effect, we assume that the probability of observing a given time is independent of the number of photons which hit the PMT, i.e. \begin{equation} P(t_j | n, E, \vec{x}, \vec{v}, t_0) \simeq P(t_j | n \geq 1, E, \vec{x}, \vec{v}, t_0) \end{equation} We first condition on the \emph{true} time at which the photon hits the PMT \begin{equation} P(t_j | n \geq 1, E, \vec{x}, \vec{v}, t_0) = \int_{t_j'} \diff t P(t_j | t_j') P(t_j' | n \geq 1, E, \vec{x}, \vec{v}, t_0) \end{equation} where we used the fact that the probability of a measured time only depends on the true PMT hit time. Now, we integrate over the track \begin{equation} P(t_j | n \geq 1, E, \vec{x}, \vec{v}, t_0) = \int_{t_j'} \diff t_j' P(t_j | t_j') \int_x \diff x P(t_j', x | n \geq 1, E, \vec{x}, \vec{v}, t_0) \end{equation} where $x$ here stands for the event that a photon emitted at a distance $x$ along the track makes it to the PMT. We now use Bayes theorem to rewrite the last probability \begin{align} P(t_j | n \geq 1, E, \vec{x}, \vec{v}, t_0) &= \int_{t_j'} \diff t_j' P(t_j | t_j') \int_x \diff x P(t_j', x | n \geq 1, E, \vec{x}, \vec{v}, t_0) \\ &= \int_{t_j'} \diff t_j' P(t_j | t_j') \int_x \diff x P(t_j' | x, n \geq 1, E, \vec{x}, \vec{v}, t_0) P(x | n \geq 1, E, \vec{x}, \vec{v}, t_0) \\ \end{align} The first term in the integral is just a delta function (up to slight differences due to dispersion) since we are assuming direct light \begin{align} P(t_j | n \geq 1, E, \vec{x}, \vec{v}, t_0) &= \int_{t_j'} \diff t_j' P(t_j | t_j') \int_x \diff x \delta\left(\frac{l(x)n(\lambda_0)}{c}-t_j'\right) P(x | n \geq 1, E, \vec{x}, \vec{v}, t_0) \\ \end{align} We now use Bayes theorem to rewrite the last term \begin{align} P(t_j | n \geq 1, E, \vec{x}, \vec{v}, t_0) &= \int_{t_j'} \diff t_j' P(t_j | t_j') \int_x \diff x \delta\left(\frac{l(x)n(\lambda_0)}{c}-t_j'\right) \frac{P(n \geq 1 | x, E, \vec{x}, \vec{v}, t_0) P(x | E, \vec{x}, \vec{v}, t_0)}{P(n \geq 1 | E, \vec{x}, \vec{v}, t_0)} \\ &= \int_{t_j'} \diff t_j' P(t_j | t_j') \int_x \diff x \delta\left(\frac{l(x)n(\lambda_0)}{c}-t_j'\right) \frac{P(x | E, \vec{x}, \vec{v}, t_0)}{P(n \geq 1 | E, \vec{x}, \vec{v}, t_0)} \\ &= \int_{t_j'} \diff t_j' P(t_j | t_j') \int_x \diff x \delta\left(\frac{l(x)n(\lambda_0)}{c}-t_j'\right) \frac{P(x | E, \vec{x}, \vec{v}, t_0)}{1 - e^{-\mu_j}} \\ &= \int_{t_j'} \diff t_j' P(t_j | t_j') \int_x \diff x \delta\left(\frac{l(x)n(\lambda_0)}{c}-t_j'\right) \frac{\mu_j(x)}{1 - e^{-\mu_j}} \\ &= \frac{1}{1 - e^{-\mu_j}} \int_x \diff x \mu_j(x) \int_{t_j'} \diff t_j' P(t_j | t_j') \delta\left(\frac{l(x)n(\lambda_0)}{c}-t_j'\right) \\ \end{align} We assume the transit time spread is equal to a gaussian (we ignore the pre and late pulsing) \begin{align} P(t_j | n \geq 1, E, \vec{x}, \vec{v}, t_0) &= \frac{1}{1 - e^{-\mu_j}} \int_x \diff x \mu_j(x) \int_{t_j'} \diff t_j' \frac{1}{\sqrt{2\pi}\sigma_t} e^{-\frac{(t_j-t_j')^2}{2\sigma_t^2}} \delta\left(\frac{l(x)n(\lambda_0)}{c}-t_j'\right) \\ &= \frac{1}{1 - e^{-\mu_j}} \frac{1}{\sqrt{2\pi}\sigma_t} \int_x \diff x \mu_j(x) e^{-\frac{(t_j-t_0(x))^2}{2\sigma_t^2}} \end{align} where in the last expression we define \begin{equation} t_0(x) \equiv \frac{l(x)n(\lambda_0)}{c} \end{equation} \begin{thebibliography}{9} \bibitem{grossman2017} Grossman, et al. \textit{Self-Destructing Dark Matter}. \href{https://arxiv.org/abs/1712.00455}{{\tt arXiv:1712.00455}}. Dec 2017. \bibitem{pepin2016} M. Pepin. \textit{Low-Mass Dark Matter Search Results and Radiogenic Backgrounds for the Cryogenic Dark Matter Search}. \url{http://hdl.handle.net/11299/185144}. Dec 2016. \bibitem{caldwell2015} T. Caldwell. \textit{Searching for Dark Matter with Single Phase Liquid Argon}. \url{https://repository.upenn.edu/dissertations/1632}. 2015. \bibitem{pdg2017} C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update. \end{thebibliography} \end{document}