#!/usr/bin/env python """ This is a script to calculate the index of refraction of water as a function of wavelength, temperature, and pressure and fit it to a linear approximation in a wavelength region where the PMTs are sensitive to. The data comes from [1]. [1] "Refractive index of Water and Steam as Function of Wavelength, Temperature, and Density". Schiebener et al. 1989. """ from __future__ import print_function, division import numpy as np A0 = 0.243905091 A1 = 9.53518094e-3 A2 = -3.64358110e-3 A3 = 2.65666426e-4 A4 = 1.59189325e-3 A5 = 2.45733798e-3 A6 = 0.897478251 A7 = -1.63066183e-2 UV = 0.2292020 IR = 5.432937 def get_index(p, wavelength, T): """ Returns the index of pure water for a given density, wavelength, and temperature. The density should be in units of kg/m^3, the wavelength in nm, and the temperature in Celsius. """ # normalize the density, temperature, and pressure p = p/1000.0 wavelength = wavelength/589.0 T = (T+273.15)/273.15 # first we compute the right hand side of Equation 7 c = A0 + A1*p + A2*T + A3*wavelength**2*T + A4/wavelength**2 + A5/(wavelength**2-UV**2) + A6/(wavelength**2-IR**2) + A7*p**2 c *= p return np.sqrt((2*c+1)/(1-c)) if __name__ == '__main__': import matplotlib.pyplot as plt import argparse parser = argparse.ArgumentParser("fit a Taylor series approximation to the inverse of the index of refraction of water") parser.add_argument("--temperature", type=float, default=10.0) parser.add_argument("--density", type=float, default=1000.0) parser.add_argument("--deg", type=int, default=2) parser.add_argument("--x0", type=float, default=400.0) parser.add_argument("--low", type=float, default=300.0) parser.add_argument("--high", type=float, default=600.0) args = parser.parse_args() x = np.linspace(args.low,args.high,1000) n = get_index(args.density,x,args.temperature) z = np.polyfit(x-args.x0,1/n, args.deg) p = np.poly1d(z) print(p) plt.plot(x,1/n,label="data") plt.plot(x,p(x-args.x0),label="fit") plt.xlabel("Wavelength (nm)") plt.ylabel("1/n") plt.title("Index of Refraction of Water at 273.15 K") plt.legend() plt.show()