#!/usr/bin/env python """ This is a script to calculate the index of refraction of water as a function of wavelength, temperature, and pressure and fit it to a linear approximation in a wavelength region where the PMTs are sensitive to. The data comes from [1]. [1] "Refractive index of Water and Steam as Function of Wavelength, Temperature, and Density". Schiebener et al. 1989. """ from __future__ import print_function, division import numpy as np import matplotlib.pyplot as plt A0 = 0.243905091 A1 = 9.53518094e-3 A2 = -3.64358110e-3 A3 = 2.65666426e-4 A4 = 1.59189325e-3 A5 = 2.45733798e-3 A6 = 0.897478251 A7 = -1.63066183e-2 UV = 0.2292020 IR = 5.432937 def get_index(p, wavelength, T): """ Returns the index of pure water for a given density, wavelength, and temperature. The density should be in units of kg/m^3, the wavelength in nm, and the temperature in Celsius. """ # normalize the density, temperature, and pressure p = p/1000.0 wavelength = wavelength/589.0 T = (T+273.15)/273.15 # first we compute the right hand side of Equation 7 c = A0 + A1*p + A2*T + A3*wavelength**2*T + A4/wavelength**2 + A5/(wavelength**2-UV**2) + A6/(wavelength**2-IR**2) + A7*p**2 c *= p return np.sqrt((2*c+1)/(1-c)) if __name__ == '__main__': import matplotlib.pyplot as plt x = np.linspace(300,500,1000) plt.plot(x,get_index(1000,x,10)) plt.xlabel("Wavelength (nm)") plt.ylabel("Index of Refraction") plt.title("Index of Refraction of Water at 273.15 K") plt.show()