aboutsummaryrefslogtreecommitdiff
path: root/utils/zdab-reprocess-orphans
AgeCommit message (Collapse)Author
2020-07-07add a script to reprocess just junk eventstlatorre
0'>30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.
"""
Script to plot final fit results along with sidebands for the dark matter
analysis. To run it just run:

    $ ./plot-energy [list of fit results]

Currently it will plot energy distributions for external muons, michel
electrons, atmospheric events with neutron followers, and prompt signal like
events. Each of these plots will have a different subplot for the particle ID
of the best fit, i.e. single electron, single muon, double electron, electron +
muon, or double muon.
"""
from __future__ import print_function, division
import numpy as np
from scipy.stats import iqr, poisson
from matplotlib.lines import Line2D
from scipy.stats import iqr, norm, beta
from scipy.special import spence
from itertools import izip_longest

particle_id = {20: 'e', 22: r'\mu'}

def plot_hist2(df, muons=False):
    for id, df_id in sorted(df.groupby('id')):
        if id == 20:
            plt.subplot(2,3,1)
        elif id == 22:
            plt.subplot(2,3,2)
        elif id == 2020:
            plt.subplot(2,3,4)
        elif id == 2022:
            plt.subplot(2,3,5)
        elif id == 2222:
            plt.subplot(2,3,6)

        if muons:
            plt.hist(np.log10(df_id.ke.values/1000), bins=np.linspace(0,4.5,100), histtype='step')
            plt.xlabel("log10(Energy (GeV))")
        else:
            bins = np.logspace(np.log10(20),np.log10(10e3),21)
            plt.hist(df_id.ke.values, bins=bins, histtype='step')
            plt.gca().set_xscale("log")
            plt.xlabel("Energy (MeV)")
        plt.title('$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)]) + '$')

    if len(df):
        plt.tight_layout()

def plot_hist(df, muons=False):
    for id, df_id in sorted(df.groupby('id')):
        if id == 20:
            plt.subplot(3,4,1)
        elif id == 22:
            plt.subplot(3,4,2)
        elif id == 2020:
            plt.subplot(3,4,5)
        elif id == 2022:
            plt.subplot(3,4,6)
        elif id == 2222:
            plt.subplot(3,4,7)
        elif id == 202020:
            plt.subplot(3,4,9)
        elif id == 202022:
            plt.subplot(3,4,10)
        elif id == 202222:
            plt.subplot(3,4,11)
        elif id == 222222:
            plt.subplot(3,4,12)

        if muons:
            plt.hist(np.log10(df_id.ke.values/1000), bins=np.linspace(0,4.5,100), histtype='step')
            plt.xlabel("log10(Energy (GeV))")
        else:
            plt.hist(df_id.ke.values, bins=np.linspace(20,10e3,100), histtype='step')
            plt.xlabel("Energy (MeV)")
        plt.title(str(id))

    if len(df):
        plt.tight_layout()

if __name__ == '__main__':
    import argparse
    import numpy as np
    import pandas as pd
    import sys
    import h5py
    from sddm.plot_energy import *
    from sddm.plot import *
    from sddm import setup_matplotlib

    parser = argparse.ArgumentParser("plot fit results")
    parser.add_argument("filenames", nargs='+', help="input files")
    parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds")
    args = parser.parse_args()

    setup_matplotlib(args.save)

    import matplotlib.pyplot as plt

    ev, fits = get_events(args.filenames)

    # First, do basic data cleaning which is done for all events.
    ev = ev[ev.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ITC | DC_BREAKDOWN) == 0]

    # 00-orphan cut
    ev = ev[(ev.gtid & 0xff) != 0]

    print("number of events after data cleaning = %i" % np.count_nonzero(ev.prompt))

    # Now, we select events tagged by the muon tag which should tag only
    # external muons. We keep the sample of muons since it's needed later to
    # identify Michel electrons and to apply the muon follower cut
    muons = ev[(ev.dc & DC_MUON) != 0]

    print("number of muons = %i" % len(muons))

    # Try to identify Michel electrons. Currently, the event selection is based
    # on Richie's thesis. Here, we do the following:
    #
    # 1. Apply more data cleaning cuts to potential Michel electrons
    # 2. Nhit >= 100
    # 3. It must be > 800 ns and less than 20 microseconds from a prompt event
    #    or a muon
    michel = ev[ev.michel]

    print("number of michel events = %i" % len(michel))

    print("number of events after neutron follower cut = %i" % np.count_nonzero(ev.prompt & (~ev.atm)))

    # remove events 200 microseconds after a muon
    ev = ev.groupby('run',group_keys=False).apply(muon_follower_cut)

    # Get rid of muon events in our main event sample
    ev = ev[(ev.dc & DC_MUON) == 0]

    prompt = ev[ev.prompt & ~ev.atm]

    atm = ev[ev.atm]

    print("number of events after muon cut = %i" % len(prompt))

    # Check to see if there are any events with missing fit information
    atm_ra = atm[['run','gtid']].to_records(index=False)
    muons_ra = muons[['run','gtid']].to_records(index=False)
    prompt_ra = prompt[['run','gtid']].to_records(index=False)
    michel_ra = michel[['run','gtid']].to_records(index=False)
    fits_ra = fits[['run','gtid']].to_records(index=False)

    if len(atm_ra) and np.count_nonzero(~np.isin(atm_ra,fits_ra)):
        print_warning("skipping %i atmospheric events because they are missing fit information!" % np.count_nonzero(~np.isin(atm_ra,fits_ra)))

    if len(muons_ra) and np.count_nonzero(~np.isin(muons_ra,fits_ra)):
        print_warning("skipping %i muon events because they are missing fit information!" % np.count_nonzero(~np.isin(muons_ra,fits_ra)))

    if len(prompt_ra) and np.count_nonzero(~np.isin(prompt_ra,fits_ra)):
        print_warning("skipping %i signal events because they are missing fit information!" % np.count_nonzero(~np.isin(prompt_ra,fits_ra)))

    if len(michel_ra) and np.count_nonzero(~np.isin(michel_ra,fits_ra)):
        print_warning("skipping %i Michel events because they are missing fit information!" % np.count_nonzero(~np.isin(michel_ra,fits_ra)))

    # Now, we merge the event info with the fitter info.
    #
    # Note: This means that the dataframe now contains multiple rows for each
    # event, one for each fit hypothesis.
    atm = pd.merge(fits,atm,how='inner',on=['run','gtid'])
    muons = pd.merge(fits,muons,how='inner',on=['run','gtid'])
    michel = pd.merge(fits,michel,how='inner',on=['run','gtid'])
    prompt = pd.merge(fits,prompt,how='inner',on=['run','gtid'])

    # get rid of events which don't have a fit
    nan = np.isnan(prompt.fmin.values)

    if np.count_nonzero(nan):
        print_warning("skipping %i signal events because the negative log likelihood is nan!" % len(prompt[nan].groupby(['run','gtid'])))

    prompt = prompt[~nan]

    nan_atm = np.isnan(atm.fmin.values)

    if np.count_nonzero(nan_atm):
        print_warning("skipping %i atmospheric events because the negative log likelihood is nan!" % len(atm[nan_atm].groupby(['run','gtid'])))

    atm = atm[~nan_atm]

    nan_muon = np.isnan(muons.fmin.values)

    if np.count_nonzero(nan_muon):
        print_warning("skipping %i muons because the negative log likelihood is nan!" % len(muons[nan_muon].groupby(['run','gtid'])))

    muons = muons[~nan_muon]

    nan_michel = np.isnan(michel.fmin.values)

    if np.count_nonzero(nan_michel):
        print_warning("skipping %i michel electron events because the negative log likelihood is nan!" % len(michel[nan_michel].groupby(['run','gtid'])))

    michel = michel[~nan_michel]

    # get the best fit
    prompt = prompt.sort_values('fmin').groupby(['run','gtid']).nth(0)
    atm = atm.sort_values('fmin').groupby(['run','gtid']).nth(0)
    michel_best_fit = michel.sort_values('fmin').groupby(['run','gtid']).nth(0)
    muon_best_fit = muons.sort_values('fmin').groupby(['run','gtid']).nth(0)
    muons = muons[muons.id == 22].sort_values('fmin').groupby(['run','gtid'],as_index=False).nth(0).reset_index(level=0,drop=True)

    # require (r/r_psup)^3 < 0.9
    prompt = prompt[prompt.r_psup < 0.9]
    atm = atm[atm.r_psup < 0.9]

    print("number of events after radius cut = %i" % len(prompt))

    # require psi < 6
    prompt = prompt[prompt.psi < 6]
    atm = atm[atm.psi < 6]

    print("number of events after psi cut = %i" % len(prompt))

    fig = plt.figure()
    plot_hist2(prompt)
    despine(fig,trim=True)
    if args.save:
        plt.savefig("prompt.pdf")
        plt.savefig("prompt.eps")
    else:
        plt.suptitle("Without Neutron Follower")
    fig = plt.figure()
    plot_hist2(atm)
    despine(fig,trim=True)
    if args.save:
        plt.savefig("atm.pdf")
        plt.savefig("atm.eps")
    else:
        plt.suptitle("With Neutron Follower")
    fig = plt.figure()
    plot_hist2(michel_best_fit)
    despine(fig,trim=True)
    if args.save:
        plt.savefig("michel_electrons.pdf")
        plt.savefig("michel_electrons.eps")
    else:
        plt.suptitle("Michel Electrons")
    fig = plt.figure()
    plot_hist2(muon_best_fit,muons=True)
    despine(fig,trim=True)
    if len(muon_best_fit):
        plt.tight_layout()
    if args.save:
        plt.savefig("external_muons.pdf")
        plt.savefig("external_muons.eps")
    else:
        plt.suptitle("External Muons")

    # Plot the energy and angular distribution for external muons
    fig = plt.figure()
    plt.subplot(2,1,1)
    plt.hist(muons.ke.values, bins=np.logspace(3,7,100), histtype='step')
    plt.xlabel("Energy (MeV)")
    plt.gca().set_xscale("log")
    plt.subplot(2,1,2)
    plt.hist(np.cos(muons.theta.values), bins=np.linspace(-1,1,100), histtype='step')
    despine(fig,trim=True)
    plt.xlabel(r"$\cos(\theta)$")
    plt.tight_layout()
    if args.save:
        plt.savefig("muon_energy_cos_theta.pdf")
        plt.savefig("muon_energy_cos_theta.eps")
    else:
        plt.suptitle("Muons")

    # For the Michel energy plot, we only look at the single particle electron
    # fit
    michel = michel[michel.id == 20].sort_values('fmin').groupby(['run','gtid'],as_index=False).nth(0).reset_index(level=0,drop=True)

    stopping_muons = pd.merge(muons,michel,left_on=['run','gtid'],right_on=['run','muon_gtid'],suffixes=('','_michel'))

    if len(stopping_muons):
        # project muon to PSUP
        stopping_muons['dx'] = stopping_muons.apply(get_dx,axis=1)
        # energy based on distance travelled
        stopping_muons['T_dx'] = dx_to_energy(stopping_muons.dx)
        stopping_muons['dT'] = stopping_muons['energy1'] - stopping_muons['T_dx']

        fig = plt.figure()
        plt.hist((stopping_muons['energy1']-stopping_muons['T_dx'])*100/stopping_muons['T_dx'], bins=np.linspace(-100,100,200), histtype='step')
        despine(fig,trim=True)
        plt.xlabel("Fractional energy difference (\%)")
        plt.title("Fractional energy difference for Stopping Muons")
        plt.tight_layout()
        if args.save:
            plt.savefig("stopping_muon_fractional_energy_difference.pdf")
            plt.savefig("stopping_muon_fractional_energy_difference.eps")
        else:
            plt.title("Stopping Muon Fractional Energy Difference")

        # 100 bins between 50 MeV and 10 GeV
        bins = np.arange(50,10000,1000)

        pd_bins = pd.cut(stopping_muons['energy1'],bins)

        T = (bins[1:] + bins[:-1])/2

        dT = stopping_muons.groupby(pd_bins)['dT'].agg(['mean','sem','std',std_err,median,median_err,iqr_std,iqr_std_err])

        fig = plt.figure()
        plt.errorbar(T,dT['median']*100/T,yerr=dT['median_err']*100/T)
        despine(fig,trim=True)
        plt.xlabel("Kinetic Energy (MeV)")
        plt.ylabel(r"Energy bias (\%)")
        plt.tight_layout()
        if args.save:
            plt.savefig("stopping_muon_energy_bias.pdf")
            plt.savefig("stopping_muon_energy_bias.eps")
        else:
            plt.title("Stopping Muon Energy Bias")

        fig = plt.figure()
        plt.errorbar(T,dT['iqr_std']*100/T,yerr=dT['iqr_std_err']*100/T)
        despine(fig,trim=True)
        plt.xlabel("Kinetic Energy (MeV)")
        plt.ylabel(r"Energy resolution (\%)")
        plt.tight_layout()
        if args.save:
            plt.savefig("stopping_muon_energy_resolution.pdf")
            plt.savefig("stopping_muon_energy_resolution.eps")
        else:
            plt.title("Stopping Muon Energy Resolution")

    fig = plt.figure()
    bins=np.linspace(0,100,100)
    plt.hist(michel.ke.values, bins=bins, histtype='step', label="Dark Matter Fitter")
    if michel.size:
        plt.hist(michel[~np.isnan(michel.rsp_energy.values)].rsp_energy.values, bins=np.linspace(20,100,100), histtype='step',label="RSP")
    x = np.linspace(0,100,1000)
    y = michel_spectrum(x)
    y /= np.trapz(y,x=x)
    N = len(michel)
    plt.plot(x, N*y*(bins[1]-bins[0]), ls='--', color='k', label="Michel Spectrum")
    despine(fig,trim=True)
    plt.xlabel("Energy (MeV)")
    plt.tight_layout()
    plt.legend()
    if args.save:
        plt.savefig("michel_electrons_ke.pdf")
        plt.savefig("michel_electrons_ke.eps")
    else:
        plt.title("Michel Electrons")
    plt.show()