aboutsummaryrefslogtreecommitdiff
path: root/src/test.c
AgeCommit message (Collapse)Author
2018-09-10add a fast likelihood functiontlatorre
This commit adds a fast function to calculate the expected number of PE at a PMT without numerically integrating over the track. This calculation is *much* faster than integrating over the track (~30 ms compared to several seconds) and so we use it during the "quick" minimization phase of the fit to quickly find the best position.
2018-09-04add a function to return the kahan sum of an arraytlatorre
For some reason the fit seems to have trouble with the kinetic energy. Basically, it seems to "converge" even though when you run the minimization again it finds a better minimum with a lower energy. I think this is likely due to the fact that for muons the kinetic energy only really affects the range of the muon and this is subject to error in the numerical integration. I also thought that maybe it could be due to roundoff error in the likelihood calculation, so I implemented the Kahan summation to try and reduce that. No idea if it's actually improving things, but I should benchmark it later to see.
2018-08-31add interp1d function to do fast interpolation when the x values are evenly ↵tlatorre
spaced
2018-08-31rotate and translate the path in path_init to speed things uptlatorre
2018-08-28add path to the likelihood fittlatorre
This commit updates the likelihood fit to use the KL path expansion. Currently, I'm just using one coefficient for the path in both x and y.
2018-08-27update tests since I switched to using the D2O muon tables from the PDGtlatorre
2018-08-27add code to expand the track of a particle using a KL expansiontlatorre
To fit the path of muons and electrons I use the Karhunen-Loeve expansion of a random 2D walk in the polar angle in x and y. This allows you to decompose the path into a sum over sine functions whose coefficients become random variables. The nice thing about fitting the path in this way is that you can capture *most* of the variation in the path using a small number of variables by only summing over the first N terms in the expansion and it is easy to calculate the probability of the coefficients since they are all uncorrelated.
2018-08-14move everything to src directorytlatorre