Age | Commit message (Collapse) | Author |
|
Since we already calculate sin(theta) in get_expected_charge() there's no
reason to calculate it again in get_probability(). This *may* already be
optimized out by the compiler.
|
|
|
|
To characterize the angular distribution of photons from an electromagnetic
shower I came up with the following functional form:
f(cos_theta) ~ exp(-abs(cos_theta-mu)^alpha/beta)
and fit this to data simulated using RAT-PAC at several different energies. I
then fit the alpha and beta coefficients as a function of energy to the
functional form:
alpha = c0 + c1/log(c2*T0 + c3)
beta = c0 + c1/log(c2*T0 + c3).
where T0 is the initial energy of the electron in MeV and c0, c1, c2, and c3
are parameters which I fit.
The longitudinal distribution of the photons generated from an electromagnetic
shower is described by a gamma distribution:
f(x) = x**(a-1)*exp(-x/b)/(Gamma(a)*b**a).
This parameterization comes from the PDG "Passage of particles through matter"
section 32.5. I also fit the data from my RAT-PAC simulation, but currently I
am not using it, and instead using a simpler form to calculate the coefficients
from the PDG (although I estimated the b parameter from the RAT-PAC data).
I also sped up the calculation of the solid angle by making a lookup table
since it was taking a significant fraction of the time to compute the
likelihood function.
|
|
This commit fixes a bug in the calculation of the average rms width of the
angular distribution for a path with a KL expansion. I also made a lot of
updates to the test-path program:
- plot the distribution of the KL expansion coefficients
- plot the standard deviation of the angular distribution as a function of
distance along with the prediction
- plot the simulated and reconstructed path in 3D
|
|
This commit adds a fast function to calculate the expected number of PE at a
PMT without numerically integrating over the track. This calculation is *much*
faster than integrating over the track (~30 ms compared to several seconds) and
so we use it during the "quick" minimization phase of the fit to quickly find
the best position.
|
|
|