aboutsummaryrefslogtreecommitdiff
path: root/src/proton.h
AgeCommit message (Collapse)Author
2019-03-16add GPLv3 licensetlatorre
2019-01-27add photons from delta rays to likelihood calculationtlatorre
This commit updates the likelihood function to take into account Cerenkov light produced from delta rays produced by muons. The angular distribution of this light is currently assumed to be constant along the track and parameterized in the same way as the Cerenkov light from an electromagnetic shower. Currently I assume the light is produced uniformly along the track which isn't exactly correct, but should be good enough.
2018-11-11update likelihood function to fit electrons!tlatorre
To characterize the angular distribution of photons from an electromagnetic shower I came up with the following functional form: f(cos_theta) ~ exp(-abs(cos_theta-mu)^alpha/beta) and fit this to data simulated using RAT-PAC at several different energies. I then fit the alpha and beta coefficients as a function of energy to the functional form: alpha = c0 + c1/log(c2*T0 + c3) beta = c0 + c1/log(c2*T0 + c3). where T0 is the initial energy of the electron in MeV and c0, c1, c2, and c3 are parameters which I fit. The longitudinal distribution of the photons generated from an electromagnetic shower is described by a gamma distribution: f(x) = x**(a-1)*exp(-x/b)/(Gamma(a)*b**a). This parameterization comes from the PDG "Passage of particles through matter" section 32.5. I also fit the data from my RAT-PAC simulation, but currently I am not using it, and instead using a simpler form to calculate the coefficients from the PDG (although I estimated the b parameter from the RAT-PAC data). I also sped up the calculation of the solid angle by making a lookup table since it was taking a significant fraction of the time to compute the likelihood function.
2018-10-18update fit to fit for electrons and protonstlatorre