Age | Commit message (Collapse) | Author |
|
|
|
|
|
This commit updates the likelihood fit to use the KL path expansion. Currently,
I'm just using one coefficient for the path in both x and y.
|
|
To fit the path of muons and electrons I use the Karhunen-Loeve expansion of a
random 2D walk in the polar angle in x and y. This allows you to decompose the
path into a sum over sine functions whose coefficients become random variables.
The nice thing about fitting the path in this way is that you can capture
*most* of the variation in the path using a small number of variables by only
summing over the first N terms in the expansion and it is easy to calculate the
probability of the coefficients since they are all uncorrelated.
|
|
The GSL library only has the Nelder Mead Simplex algorithm for doing
multidimensional minimization without gradient information. The nlopt library
has lots of different minimization algorithms so it's easier to switch between
them to see which one works best.
|
|
|