diff options
Diffstat (limited to 'utils/plot-root-results')
| -rwxr-xr-x | utils/plot-root-results | 308 | 
1 files changed, 308 insertions, 0 deletions
| diff --git a/utils/plot-root-results b/utils/plot-root-results new file mode 100755 index 0000000..e8dcf19 --- /dev/null +++ b/utils/plot-root-results @@ -0,0 +1,308 @@ +#!/usr/bin/env python +# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago> +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU General Public License as published by the Free +# Software Foundation, either version 3 of the License, or (at your option) +# any later version. +# +# This program is distributed in the hope that it will be useful, but WITHOUT +# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for +# more details. +# +# You should have received a copy of the GNU General Public License along with +# this program. If not, see <https://www.gnu.org/licenses/>. + +from __future__ import print_function, division +import numpy as np + +# Taken from https://raw.githubusercontent.com/mwaskom/seaborn/c73055b2a9d9830c6fbbace07127c370389d04dd/seaborn/utils.py +def despine(fig=None, ax=None, top=True, right=True, left=False, +            bottom=False, offset=None, trim=False): +    """Remove the top and right spines from plot(s). + +    fig : matplotlib figure, optional +        Figure to despine all axes of, default uses current figure. +    ax : matplotlib axes, optional +        Specific axes object to despine. +    top, right, left, bottom : boolean, optional +        If True, remove that spine. +    offset : int or dict, optional +        Absolute distance, in points, spines should be moved away +        from the axes (negative values move spines inward). A single value +        applies to all spines; a dict can be used to set offset values per +        side. +    trim : bool, optional +        If True, limit spines to the smallest and largest major tick +        on each non-despined axis. + +    Returns +    ------- +    None + +    """ +    # Get references to the axes we want +    if fig is None and ax is None: +        axes = plt.gcf().axes +    elif fig is not None: +        axes = fig.axes +    elif ax is not None: +        axes = [ax] + +    for ax_i in axes: +        for side in ["top", "right", "left", "bottom"]: +            # Toggle the spine objects +            is_visible = not locals()[side] +            ax_i.spines[side].set_visible(is_visible) +            if offset is not None and is_visible: +                try: +                    val = offset.get(side, 0) +                except AttributeError: +                    val = offset +                _set_spine_position(ax_i.spines[side], ('outward', val)) + +        # Potentially move the ticks +        if left and not right: +            maj_on = any( +                t.tick1line.get_visible() +                for t in ax_i.yaxis.majorTicks +            ) +            min_on = any( +                t.tick1line.get_visible() +                for t in ax_i.yaxis.minorTicks +            ) +            ax_i.yaxis.set_ticks_position("right") +            for t in ax_i.yaxis.majorTicks: +                t.tick2line.set_visible(maj_on) +            for t in ax_i.yaxis.minorTicks: +                t.tick2line.set_visible(min_on) + +        if bottom and not top: +            maj_on = any( +                t.tick1line.get_visible() +                for t in ax_i.xaxis.majorTicks +            ) +            min_on = any( +                t.tick1line.get_visible() +                for t in ax_i.xaxis.minorTicks +            ) +            ax_i.xaxis.set_ticks_position("top") +            for t in ax_i.xaxis.majorTicks: +                t.tick2line.set_visible(maj_on) +            for t in ax_i.xaxis.minorTicks: +                t.tick2line.set_visible(min_on) + +        if trim: +            # clip off the parts of the spines that extend past major ticks +            xticks = ax_i.get_xticks() +            if xticks.size: +                firsttick = np.compress(xticks >= min(ax_i.get_xlim()), +                                        xticks)[0] +                lasttick = np.compress(xticks <= max(ax_i.get_xlim()), +                                       xticks)[-1] +                ax_i.spines['bottom'].set_bounds(firsttick, lasttick) +                ax_i.spines['top'].set_bounds(firsttick, lasttick) +                newticks = xticks.compress(xticks <= lasttick) +                newticks = newticks.compress(newticks >= firsttick) +                ax_i.set_xticks(newticks) + +            yticks = ax_i.get_yticks() +            if yticks.size: +                firsttick = np.compress(yticks >= min(ax_i.get_ylim()), +                                        yticks)[0] +                lasttick = np.compress(yticks <= max(ax_i.get_ylim()), +                                       yticks)[-1] +                ax_i.spines['left'].set_bounds(firsttick, lasttick) +                ax_i.spines['right'].set_bounds(firsttick, lasttick) +                newticks = yticks.compress(yticks <= lasttick) +                newticks = newticks.compress(newticks >= firsttick) +                ax_i.set_yticks(newticks) + +if __name__ == '__main__': +    import ROOT +    import argparse +    from os.path import split +    from matplotlib.ticker import FuncFormatter + +    parser = argparse.ArgumentParser("plot ROOT fit results") +    parser.add_argument("filename", help="input file") +    parser.add_argument("--save", action="store_true", default=False, help="save plots") +    args = parser.parse_args() + +    if args.save: +        # default \textwidth for a fullpage article in Latex is 16.50764 cm. +        # You can figure this out by compiling the following TeX document: +        # +        #    \documentclass{article} +        #    \usepackage{fullpage} +        #    \usepackage{layouts} +        #    \begin{document} +        #    textwidth in cm: \printinunitsof{cm}\prntlen{\textwidth} +        #    \end{document} + +        width = 16.50764 +        width /= 2.54 # cm -> inches +        # According to this page: +        # http://www-personal.umich.edu/~jpboyd/eng403_chap2_tuftegospel.pdf, +        # Tufte suggests an aspect ratio of 1.5 - 1.6. +        height = width/1.5 +        FIGSIZE = (width,height) + +        import matplotlib.pyplot as plt + +        font = {'family':'serif', 'serif': ['computer modern roman']} +        plt.rc('font',**font) + +        plt.rc('text', usetex=True) +    else: +        # on retina screens, the default plots are way too small +        # by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1 +        # Qt5 will scale everything using the dpi in ~/.Xresources +        import matplotlib +        matplotlib.use("Qt5Agg") + +        import matplotlib.pyplot as plt + +        # Default figure size. Currently set to my monitor width and height so that +        # things are properly formatted +        FIGSIZE = (13.78,7.48) + +        # Make the defalt font bigger +        plt.rc('font', size=22) + +    root_file = ROOT.TFile(args.filename) + +    head, tail = split(args.filename) + +    if tail.startswith("e_") or tail.startswith("electron"): +        prefix = "electron" +    elif tail.startswith("mu_") or tail.startswith("muon"): +        prefix = "muon" +    else: +        prefix = "" + +    try: +        if root_file.Get("h1"): +            for hist_number, tf1_number in zip([1,2,4,5],[1,2,3,None]): +                h = root_file.Get("h%i" % hist_number) +                if tf1_number: +                    f = root_file.Get("f%i" % tf1_number) + +                bins = [h.GetXaxis().GetBinLowEdge(i) for i in range(1,h.GetNbinsX()+1)] + [h.GetXaxis().GetBinUpEdge(h.GetNbinsX())] +                hist = [h.GetBinContent(i) for i in range(1,h.GetNbinsX()+1)] + +                bins = np.array(bins) +                hist = np.array(hist) + +                bincenters = (bins[1:] + bins[:-1])/2 + +                norm = np.trapz(hist,bincenters) + +                hist /= norm + +                fig = plt.figure(figsize=FIGSIZE) +                plt.hist(bincenters,weights=hist,bins=bins,histtype='step') +                x = np.linspace(bins[0],bins[-1],10000) +                if tf1_number: +                    plt.plot(x,[f(xval)/norm for xval in x],color='red') +                despine(fig,trim=True) +                if hist_number == 1: +                    plt.gca().set_xlim(-1,1) +                    plt.ylabel("Arbitrary Units") +                    plt.xlabel(r"$\cos\theta$") +                    if args.save: +                        plt.savefig("%s_shower_angular_distribution.pdf" % prefix) +                        plt.savefig("%s_shower_angular_distribution.eps" % prefix) +                    else: +                        plt.title("%s Shower Angular Distribution" % prefix.capitalize()) +                elif hist_number == 2: +                    plt.ylabel("Arbitrary Units") +                    plt.xlabel(r"Distance along Track (cm)") +                    if args.save: +                        plt.savefig("%s_shower_position_distribution.pdf" % prefix) +                        plt.savefig("%s_shower_position_distribution.eps" % prefix) +                    else: +                        plt.title("%s Shower Position Distribution" % prefix.capitalize()) +                elif hist_number == 4: +                    plt.ylabel("Arbitrary Units") +                    plt.xlabel(r"$\cos\theta$") +                    if args.save: +                        plt.savefig("%s_delta_ray_angular_distribution.pdf" % prefix) +                        plt.savefig("%s_delta_ray_angular_distribution.eps" % prefix) +                    else: +                        plt.title("%s Delta Ray Angular Distribution" % prefix.capitalize()) +                elif hist_number == 5: +                    plt.ylabel("Arbitrary Units") +                    plt.xlabel(r"Distance along Track (cm)") +                    if args.save: +                        plt.savefig("%s_delta_ray_position_distribution.pdf" % prefix) +                        plt.savefig("%s_delta_ray_position_distribution.eps" % prefix) +                    else: +                        plt.title("%s Delta Ray Position Distribution" % prefix.capitalize()) +        else: +            for graph_name, tf1_number, ylabel in zip(["g_dir_alpha","g_dir_beta","g_pos_alpha","g_pos_beta","g_dir_alpha_delta","g_dir_beta_delta"], +                                                      [1,2,None,None,3,4], +                                                      [r"$\alpha$",r"$\beta$",r"$k$",r"$\theta$",r"$\alpha$",r"$\beta$"]): +                g = root_file.Get(graph_name) +                if tf1_number: +                    f = g.GetFunction("f%i" % tf1_number) + +                x = [g.GetX()[i] for i in range(g.GetN())] +                y = [g.GetY()[i] for i in range(g.GetN())] +                yerr = [g.GetEY()[i] for i in range(g.GetN())] + +                x = np.array(x) +                y = np.array(y) +                yerr = np.array(yerr) + +                fig = plt.figure(figsize=FIGSIZE) +                plt.errorbar(x,y,yerr=yerr,fmt='o') +                x = np.linspace(x[0],x[-1],10000) +                if tf1_number: +                    plt.plot(x,[f(xval) for xval in x],color='red') +                despine(fig,trim=True) +                plt.xlabel("Kinetic Energy (MeV)") +                plt.ylabel(ylabel) + +                if graph_name == "g_dir_alpha": +                    if args.save: +                        plt.savefig("%s_shower_angular_distribution_alpha.pdf" % prefix) +                        plt.savefig("%s_shower_angular_distribution_alpha.eps" % prefix) +                    else: +                        plt.title("%s Shower Angular Distribution" % prefix.capitalize()) +                elif graph_name == "g_dir_beta": +                    if args.save: +                        plt.savefig("%s_shower_angular_distribution_beta.pdf" % prefix) +                        plt.savefig("%s_shower_angular_distribution_beta.eps" % prefix) +                    else: +                        plt.title("%s Shower Position Distribution" % prefix.capitalize()) +                elif graph_name == "g_pos_alpha": +                    if args.save: +                        plt.savefig("%s_shower_position_distribution_alpha.pdf" % prefix) +                        plt.savefig("%s_shower_position_distribution_alpha.eps" % prefix) +                    else: +                        plt.title("%s Shower Position Distribution" % prefix.capitalize()) +                elif graph_name == "g_pos_beta": +                    if args.save: +                        plt.savefig("%s_shower_position_distribution_beta.pdf" % prefix) +                        plt.savefig("%s_shower_position_distribution_beta.eps" % prefix) +                    else: +                        plt.title("%s Shower Position Distribution" % prefix.capitalize()) +                elif graph_name == "g_dir_alpha_delta": +                    if args.save: +                        plt.savefig("%s_delta_ray_angular_distribution_alpha.pdf" % prefix) +                        plt.savefig("%s_delta_ray_angular_distribution_alpha.eps" % prefix) +                    else: +                        plt.title("%s Delta Ray Angular Distribution" % prefix.capitalize()) +                elif graph_name == "g_dir_beta_delta": +                    if args.save: +                        plt.savefig("%s_delta_ray_angular_distribution_beta.pdf" % prefix) +                        plt.savefig("%s_delta_ray_angular_distribution_beta.eps" % prefix) +                    else: +                        plt.title("%s Delta Ray Position Distribution" % prefix.capitalize()) + +        plt.show() +     +    finally: +        root_file.Close() | 
