aboutsummaryrefslogtreecommitdiff
path: root/utils/plot-michels
diff options
context:
space:
mode:
Diffstat (limited to 'utils/plot-michels')
-rwxr-xr-xutils/plot-michels6
1 files changed, 3 insertions, 3 deletions
diff --git a/utils/plot-michels b/utils/plot-michels
index bec9e17..b313c3e 100755
--- a/utils/plot-michels
+++ b/utils/plot-michels
@@ -65,16 +65,16 @@ def print_particle_probs(data):
print("P(%s) = %.2f +/- %.2f" % (particle_id_str,mode[i]*100,std[i]*100))
def make_nll(data, mc, bins, print_nll=False):
+ data_hist = np.histogram(data.ke.values,bins=bins)[0]
+
def nll(x, grad=None):
if any(x[i] < 0 for i in (0,2)):
return np.inf
- data_hist = np.histogram(data.ke.values*(1+x[1]),bins=bins)[0]
-
# Get the Monte Carlo histograms. We need to do this within the
# likelihood function since we apply the energy resolution parameters
# to the Monte Carlo.
- cdf = norm.cdf(bins[:,np.newaxis],mc.ke.values,mc.ke.values*x[2])
+ cdf = norm.cdf(bins[:,np.newaxis],mc.ke.values*(1+x[1]),mc.ke.values*x[2])
mc_hist = np.sum(cdf[1:] - cdf[:-1],axis=-1)*x[0]
# Calculate the negative log of the likelihood of observing the data