aboutsummaryrefslogtreecommitdiff
path: root/utils/dm-search
diff options
context:
space:
mode:
Diffstat (limited to 'utils/dm-search')
-rwxr-xr-xutils/dm-search15
1 files changed, 10 insertions, 5 deletions
diff --git a/utils/dm-search b/utils/dm-search
index 91d9b87..dd4946b 100755
--- a/utils/dm-search
+++ b/utils/dm-search
@@ -350,7 +350,7 @@ def do_fit(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,weights,atmo_scale
nlls = []
for universe in range(nuniverses):
- data_mc_with_weights = pd.merge(data_mc,weights_dict[universe],how='left',on=['run','evn'])
+ data_mc_with_weights = pd.merge(data_mc,weights_dict[universe],how='left',on=['run','unique_id'])
data_mc_with_weights.weight = data_mc_with_weights.weight.fillna(1.0)
nll = make_nll(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc_with_weights,atmo_scale_factor,muon_scale_factor,bins,reweight=True,print_nll=print_nll,dm_sample=dm_sample)
@@ -359,7 +359,7 @@ def do_fit(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,weights,atmo_scale
universe = np.argmin(nlls)
if refit:
- data_mc_with_weights = pd.merge(data_mc,weights[weights.universe == universe],how='left',on=['run','evn'])
+ data_mc_with_weights = pd.merge(data_mc,weights[weights.universe == universe],how='left',on=['run','unique_id'])
data_mc_with_weights.weight = data_mc_with_weights.weight.fillna(1.0)
# Create a new negative log likelihood function with the weighted Monte Carlo.
@@ -467,7 +467,7 @@ def get_limits(dm_masses,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,b
dm_energy = dm_mass
xopt, universe, samples = do_fit(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,weights,atmo_scale_factor,muon_scale_factor,bins,steps,print_nll,walkers,thin)
- data_mc_with_weights = pd.merge(data_mc,weights[weights.universe == universe],how='left',on=['run','evn'])
+ data_mc_with_weights = pd.merge(data_mc,weights[weights.universe == universe],how='left',on=['run','unique_id'])
data_mc_with_weights.weight = data_mc_with_weights.weight.fillna(1.0)
limit = np.percentile(samples[:,6],90)
@@ -609,6 +609,11 @@ if __name__ == '__main__':
mcpl = load_mcpl_files(args.mcpl)
ev_mc = renormalize_data(ev_mc.reset_index(),mcpl)
+ # Merge weights with MCPL dataframe to get the unique id column in the
+ # weights dataframe since that is what we use to merge with the Monte
+ # Carlo.
+ weights = pd.merge(weights,mcpl[['run','evn','unique_id']],on=['run','evn'],how='left')
+
# There are a handful of weights which turn out to be slightly negative for
# some reason. For example:
#
@@ -776,8 +781,8 @@ if __name__ == '__main__':
# Set the random seed so we get reproducible results here
np.random.seed(0)
- data_mc_with_weights = pd.merge(data_mc,weights[weights.universe == 0],how='left',on=['run','evn'])
- data_atm_mc_with_weights = pd.merge(data_atm_mc,weights[weights.universe == 0],how='left',on=['run','evn'])
+ data_mc_with_weights = pd.merge(data_mc,weights[weights.universe == 0],how='left',on=['run','unique_id'])
+ data_atm_mc_with_weights = pd.merge(data_atm_mc,weights[weights.universe == 0],how='left',on=['run','unique_id'])
discoveries = 0