diff options
Diffstat (limited to 'dict.c')
-rw-r--r-- | dict.c | 1219 |
1 files changed, 0 insertions, 1219 deletions
@@ -1,1219 +0,0 @@ -/* Hash Tables Implementation. - * - * This file implements in memory hash tables with insert/del/replace/find/ - * get-random-element operations. Hash tables will auto resize if needed - * tables of power of two in size are used, collisions are handled by - * chaining. See the source code for more information... :) - * - * Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com> - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions are met: - * - * * Redistributions of source code must retain the above copyright notice, - * this list of conditions and the following disclaimer. - * * Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * * Neither the name of Redis nor the names of its contributors may be used - * to endorse or promote products derived from this software without - * specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" - * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE - * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS - * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN - * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) - * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE - * POSSIBILITY OF SUCH DAMAGE. - */ - -#include "fmacros.h" - -#include <stdio.h> -#include <stdlib.h> -#include <stdint.h> -#include <string.h> -#include <stdarg.h> -#include <limits.h> -#include <sys/time.h> - -#include "dict.h" -#include <assert.h> - -/* Using dictEnableResize() / dictDisableResize() we make possible to - * enable/disable resizing of the hash table as needed. This is very important - * for Redis, as we use copy-on-write and don't want to move too much memory - * around when there is a child performing saving operations. - * - * Note that even when dict_can_resize is set to 0, not all resizes are - * prevented: a hash table is still allowed to grow if the ratio between - * the number of elements and the buckets > dict_force_resize_ratio. */ -static int dict_can_resize = 1; -static unsigned int dict_force_resize_ratio = 5; - -/* -------------------------- private prototypes ---------------------------- */ - -static int _dictExpandIfNeeded(dict *ht); -static unsigned long _dictNextPower(unsigned long size); -static long _dictKeyIndex(dict *ht, const void *key, uint64_t hash, dictEntry **existing); -static int _dictInit(dict *ht, dictType *type, void *privDataPtr); - -/* -------------------------- hash functions -------------------------------- */ - -static uint8_t dict_hash_function_seed[16]; - -void dictSetHashFunctionSeed(uint8_t *seed) { - memcpy(dict_hash_function_seed,seed,sizeof(dict_hash_function_seed)); -} - -uint8_t *dictGetHashFunctionSeed(void) { - return dict_hash_function_seed; -} - -/* The default hashing function uses SipHash implementation - * in siphash.c. */ - -uint64_t siphash(const uint8_t *in, const size_t inlen, const uint8_t *k); -uint64_t siphash_nocase(const uint8_t *in, const size_t inlen, const uint8_t *k); - -uint64_t dictGenHashFunction(const void *key, int len) { - return siphash(key,len,dict_hash_function_seed); -} - -uint64_t dictGenCaseHashFunction(const unsigned char *buf, int len) { - return siphash_nocase(buf,len,dict_hash_function_seed); -} - -/* ----------------------------- API implementation ------------------------- */ - -/* Reset a hash table already initialized with ht_init(). - * NOTE: This function should only be called by ht_destroy(). */ -static void _dictReset(dictht *ht) -{ - ht->table = NULL; - ht->size = 0; - ht->sizemask = 0; - ht->used = 0; -} - -/* Create a new hash table */ -dict *dictCreate(dictType *type, - void *privDataPtr) -{ - dict *d = malloc(sizeof(*d)); - - _dictInit(d,type,privDataPtr); - return d; -} - -/* Initialize the hash table */ -int _dictInit(dict *d, dictType *type, - void *privDataPtr) -{ - _dictReset(&d->ht[0]); - _dictReset(&d->ht[1]); - d->type = type; - d->privdata = privDataPtr; - d->rehashidx = -1; - d->iterators = 0; - return DICT_OK; -} - -/* Resize the table to the minimal size that contains all the elements, - * but with the invariant of a USED/BUCKETS ratio near to <= 1 */ -int dictResize(dict *d) -{ - int minimal; - - if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR; - minimal = d->ht[0].used; - if (minimal < DICT_HT_INITIAL_SIZE) - minimal = DICT_HT_INITIAL_SIZE; - return dictExpand(d, minimal); -} - -/* Expand or create the hash table */ -int dictExpand(dict *d, unsigned long size) -{ - /* the size is invalid if it is smaller than the number of - * elements already inside the hash table */ - if (dictIsRehashing(d) || d->ht[0].used > size) - return DICT_ERR; - - dictht n; /* the new hash table */ - unsigned long realsize = _dictNextPower(size); - - /* Rehashing to the same table size is not useful. */ - if (realsize == d->ht[0].size) return DICT_ERR; - - /* Allocate the new hash table and initialize all pointers to NULL */ - n.size = realsize; - n.sizemask = realsize-1; - n.table = calloc(realsize*sizeof(dictEntry*),1); - n.used = 0; - - /* Is this the first initialization? If so it's not really a rehashing - * we just set the first hash table so that it can accept keys. */ - if (d->ht[0].table == NULL) { - d->ht[0] = n; - return DICT_OK; - } - - /* Prepare a second hash table for incremental rehashing */ - d->ht[1] = n; - d->rehashidx = 0; - return DICT_OK; -} - -/* Performs N steps of incremental rehashing. Returns 1 if there are still - * keys to move from the old to the new hash table, otherwise 0 is returned. - * - * Note that a rehashing step consists in moving a bucket (that may have more - * than one key as we use chaining) from the old to the new hash table, however - * since part of the hash table may be composed of empty spaces, it is not - * guaranteed that this function will rehash even a single bucket, since it - * will visit at max N*10 empty buckets in total, otherwise the amount of - * work it does would be unbound and the function may block for a long time. */ -int dictRehash(dict *d, int n) { - int empty_visits = n*10; /* Max number of empty buckets to visit. */ - if (!dictIsRehashing(d)) return 0; - - while(n-- && d->ht[0].used != 0) { - dictEntry *de, *nextde; - - /* Note that rehashidx can't overflow as we are sure there are more - * elements because ht[0].used != 0 */ - assert(d->ht[0].size > (unsigned long)d->rehashidx); - while(d->ht[0].table[d->rehashidx] == NULL) { - d->rehashidx++; - if (--empty_visits == 0) return 1; - } - de = d->ht[0].table[d->rehashidx]; - /* Move all the keys in this bucket from the old to the new hash HT */ - while(de) { - uint64_t h; - - nextde = de->next; - /* Get the index in the new hash table */ - h = dictHashKey(d, de->key) & d->ht[1].sizemask; - de->next = d->ht[1].table[h]; - d->ht[1].table[h] = de; - d->ht[0].used--; - d->ht[1].used++; - de = nextde; - } - d->ht[0].table[d->rehashidx] = NULL; - d->rehashidx++; - } - - /* Check if we already rehashed the whole table... */ - if (d->ht[0].used == 0) { - free(d->ht[0].table); - d->ht[0] = d->ht[1]; - _dictReset(&d->ht[1]); - d->rehashidx = -1; - return 0; - } - - /* More to rehash... */ - return 1; -} - -long long timeInMilliseconds(void) { - struct timeval tv; - - gettimeofday(&tv,NULL); - return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000); -} - -/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */ -int dictRehashMilliseconds(dict *d, int ms) { - long long start = timeInMilliseconds(); - int rehashes = 0; - - while(dictRehash(d,100)) { - rehashes += 100; - if (timeInMilliseconds()-start > ms) break; - } - return rehashes; -} - -/* This function performs just a step of rehashing, and only if there are - * no safe iterators bound to our hash table. When we have iterators in the - * middle of a rehashing we can't mess with the two hash tables otherwise - * some element can be missed or duplicated. - * - * This function is called by common lookup or update operations in the - * dictionary so that the hash table automatically migrates from H1 to H2 - * while it is actively used. */ -static void _dictRehashStep(dict *d) { - if (d->iterators == 0) dictRehash(d,1); -} - -/* Add an element to the target hash table */ -int dictAdd(dict *d, void *key, void *val) -{ - dictEntry *entry = dictAddRaw(d,key,NULL); - - if (!entry) return DICT_ERR; - dictSetVal(d, entry, val); - return DICT_OK; -} - -/* Low level add or find: - * This function adds the entry but instead of setting a value returns the - * dictEntry structure to the user, that will make sure to fill the value - * field as he wishes. - * - * This function is also directly exposed to the user API to be called - * mainly in order to store non-pointers inside the hash value, example: - * - * entry = dictAddRaw(dict,mykey,NULL); - * if (entry != NULL) dictSetSignedIntegerVal(entry,1000); - * - * Return values: - * - * If key already exists NULL is returned, and "*existing" is populated - * with the existing entry if existing is not NULL. - * - * If key was added, the hash entry is returned to be manipulated by the caller. - */ -dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing) -{ - long index; - dictEntry *entry; - dictht *ht; - - if (dictIsRehashing(d)) _dictRehashStep(d); - - /* Get the index of the new element, or -1 if - * the element already exists. */ - if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1) - return NULL; - - /* Allocate the memory and store the new entry. - * Insert the element in top, with the assumption that in a database - * system it is more likely that recently added entries are accessed - * more frequently. */ - ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0]; - entry = malloc(sizeof(*entry)); - entry->next = ht->table[index]; - ht->table[index] = entry; - ht->used++; - - /* Set the hash entry fields. */ - dictSetKey(d, entry, key); - return entry; -} - -/* Add or Overwrite: - * Add an element, discarding the old value if the key already exists. - * Return 1 if the key was added from scratch, 0 if there was already an - * element with such key and dictReplace() just performed a value update - * operation. */ -int dictReplace(dict *d, void *key, void *val) -{ - dictEntry *entry, *existing, auxentry; - - /* Try to add the element. If the key - * does not exists dictAdd will succeed. */ - entry = dictAddRaw(d,key,&existing); - if (entry) { - dictSetVal(d, entry, val); - return 1; - } - - /* Set the new value and free the old one. Note that it is important - * to do that in this order, as the value may just be exactly the same - * as the previous one. In this context, think to reference counting, - * you want to increment (set), and then decrement (free), and not the - * reverse. */ - auxentry = *existing; - dictSetVal(d, existing, val); - dictFreeVal(d, &auxentry); - return 0; -} - -/* Add or Find: - * dictAddOrFind() is simply a version of dictAddRaw() that always - * returns the hash entry of the specified key, even if the key already - * exists and can't be added (in that case the entry of the already - * existing key is returned.) - * - * See dictAddRaw() for more information. */ -dictEntry *dictAddOrFind(dict *d, void *key) { - dictEntry *entry, *existing; - entry = dictAddRaw(d,key,&existing); - return entry ? entry : existing; -} - -/* Search and remove an element. This is an helper function for - * dictDelete() and dictUnlink(), please check the top comment - * of those functions. */ -static dictEntry *dictGenericDelete(dict *d, const void *key, int nofree) { - uint64_t h, idx; - dictEntry *he, *prevHe; - int table; - - if (d->ht[0].used == 0 && d->ht[1].used == 0) return NULL; - - if (dictIsRehashing(d)) _dictRehashStep(d); - h = dictHashKey(d, key); - - for (table = 0; table <= 1; table++) { - idx = h & d->ht[table].sizemask; - he = d->ht[table].table[idx]; - prevHe = NULL; - while(he) { - if (key==he->key || dictCompareKeys(d, key, he->key)) { - /* Unlink the element from the list */ - if (prevHe) - prevHe->next = he->next; - else - d->ht[table].table[idx] = he->next; - if (!nofree) { - dictFreeKey(d, he); - dictFreeVal(d, he); - free(he); - } - d->ht[table].used--; - return he; - } - prevHe = he; - he = he->next; - } - if (!dictIsRehashing(d)) break; - } - return NULL; /* not found */ -} - -/* Remove an element, returning DICT_OK on success or DICT_ERR if the - * element was not found. */ -int dictDelete(dict *ht, const void *key) { - return dictGenericDelete(ht,key,0) ? DICT_OK : DICT_ERR; -} - -/* Remove an element from the table, but without actually releasing - * the key, value and dictionary entry. The dictionary entry is returned - * if the element was found (and unlinked from the table), and the user - * should later call `dictFreeUnlinkedEntry()` with it in order to release it. - * Otherwise if the key is not found, NULL is returned. - * - * This function is useful when we want to remove something from the hash - * table but want to use its value before actually deleting the entry. - * Without this function the pattern would require two lookups: - * - * entry = dictFind(...); - * // Do something with entry - * dictDelete(dictionary,entry); - * - * Thanks to this function it is possible to avoid this, and use - * instead: - * - * entry = dictUnlink(dictionary,entry); - * // Do something with entry - * dictFreeUnlinkedEntry(entry); // <- This does not need to lookup again. - */ -dictEntry *dictUnlink(dict *ht, const void *key) { - return dictGenericDelete(ht,key,1); -} - -/* You need to call this function to really free the entry after a call - * to dictUnlink(). It's safe to call this function with 'he' = NULL. */ -void dictFreeUnlinkedEntry(dict *d, dictEntry *he) { - if (he == NULL) return; - dictFreeKey(d, he); - dictFreeVal(d, he); - free(he); -} - -/* Destroy an entire dictionary */ -int _dictClear(dict *d, dictht *ht, void(callback)(void *)) { - unsigned long i; - - /* Free all the elements */ - for (i = 0; i < ht->size && ht->used > 0; i++) { - dictEntry *he, *nextHe; - - if (callback && (i & 65535) == 0) callback(d->privdata); - - if ((he = ht->table[i]) == NULL) continue; - while(he) { - nextHe = he->next; - dictFreeKey(d, he); - dictFreeVal(d, he); - free(he); - ht->used--; - he = nextHe; - } - } - /* Free the table and the allocated cache structure */ - free(ht->table); - /* Re-initialize the table */ - _dictReset(ht); - return DICT_OK; /* never fails */ -} - -/* Clear & Release the hash table */ -void dictRelease(dict *d) -{ - _dictClear(d,&d->ht[0],NULL); - _dictClear(d,&d->ht[1],NULL); - free(d); -} - -dictEntry *dictFind(dict *d, const void *key) -{ - dictEntry *he; - uint64_t h, idx, table; - - if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */ - if (dictIsRehashing(d)) _dictRehashStep(d); - h = dictHashKey(d, key); - for (table = 0; table <= 1; table++) { - idx = h & d->ht[table].sizemask; - he = d->ht[table].table[idx]; - while(he) { - if (key==he->key || dictCompareKeys(d, key, he->key)) - return he; - he = he->next; - } - if (!dictIsRehashing(d)) return NULL; - } - return NULL; -} - -void *dictFetchValue(dict *d, const void *key) { - dictEntry *he; - - he = dictFind(d,key); - return he ? dictGetVal(he) : NULL; -} - -/* A fingerprint is a 64 bit number that represents the state of the dictionary - * at a given time, it's just a few dict properties xored together. - * When an unsafe iterator is initialized, we get the dict fingerprint, and check - * the fingerprint again when the iterator is released. - * If the two fingerprints are different it means that the user of the iterator - * performed forbidden operations against the dictionary while iterating. */ -long long dictFingerprint(dict *d) { - long long integers[6], hash = 0; - int j; - - integers[0] = (long) d->ht[0].table; - integers[1] = d->ht[0].size; - integers[2] = d->ht[0].used; - integers[3] = (long) d->ht[1].table; - integers[4] = d->ht[1].size; - integers[5] = d->ht[1].used; - - /* We hash N integers by summing every successive integer with the integer - * hashing of the previous sum. Basically: - * - * Result = hash(hash(hash(int1)+int2)+int3) ... - * - * This way the same set of integers in a different order will (likely) hash - * to a different number. */ - for (j = 0; j < 6; j++) { - hash += integers[j]; - /* For the hashing step we use Tomas Wang's 64 bit integer hash. */ - hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1; - hash = hash ^ (hash >> 24); - hash = (hash + (hash << 3)) + (hash << 8); // hash * 265 - hash = hash ^ (hash >> 14); - hash = (hash + (hash << 2)) + (hash << 4); // hash * 21 - hash = hash ^ (hash >> 28); - hash = hash + (hash << 31); - } - return hash; -} - -dictIterator *dictGetIterator(dict *d) -{ - dictIterator *iter = malloc(sizeof(*iter)); - - iter->d = d; - iter->table = 0; - iter->index = -1; - iter->safe = 0; - iter->entry = NULL; - iter->nextEntry = NULL; - return iter; -} - -dictIterator *dictGetSafeIterator(dict *d) { - dictIterator *i = dictGetIterator(d); - - i->safe = 1; - return i; -} - -dictEntry *dictNext(dictIterator *iter) -{ - while (1) { - if (iter->entry == NULL) { - dictht *ht = &iter->d->ht[iter->table]; - if (iter->index == -1 && iter->table == 0) { - if (iter->safe) - iter->d->iterators++; - else - iter->fingerprint = dictFingerprint(iter->d); - } - iter->index++; - if (iter->index >= (long) ht->size) { - if (dictIsRehashing(iter->d) && iter->table == 0) { - iter->table++; - iter->index = 0; - ht = &iter->d->ht[1]; - } else { - break; - } - } - iter->entry = ht->table[iter->index]; - } else { - iter->entry = iter->nextEntry; - } - if (iter->entry) { - /* We need to save the 'next' here, the iterator user - * may delete the entry we are returning. */ - iter->nextEntry = iter->entry->next; - return iter->entry; - } - } - return NULL; -} - -void dictReleaseIterator(dictIterator *iter) -{ - if (!(iter->index == -1 && iter->table == 0)) { - if (iter->safe) - iter->d->iterators--; - else - assert(iter->fingerprint == dictFingerprint(iter->d)); - } - free(iter); -} - -/* Return a random entry from the hash table. Useful to - * implement randomized algorithms */ -dictEntry *dictGetRandomKey(dict *d) -{ - dictEntry *he, *orighe; - unsigned long h; - int listlen, listele; - - if (dictSize(d) == 0) return NULL; - if (dictIsRehashing(d)) _dictRehashStep(d); - if (dictIsRehashing(d)) { - do { - /* We are sure there are no elements in indexes from 0 - * to rehashidx-1 */ - h = d->rehashidx + (random() % (d->ht[0].size + - d->ht[1].size - - d->rehashidx)); - he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] : - d->ht[0].table[h]; - } while(he == NULL); - } else { - do { - h = random() & d->ht[0].sizemask; - he = d->ht[0].table[h]; - } while(he == NULL); - } - - /* Now we found a non empty bucket, but it is a linked - * list and we need to get a random element from the list. - * The only sane way to do so is counting the elements and - * select a random index. */ - listlen = 0; - orighe = he; - while(he) { - he = he->next; - listlen++; - } - listele = random() % listlen; - he = orighe; - while(listele--) he = he->next; - return he; -} - -/* This function samples the dictionary to return a few keys from random - * locations. - * - * It does not guarantee to return all the keys specified in 'count', nor - * it does guarantee to return non-duplicated elements, however it will make - * some effort to do both things. - * - * Returned pointers to hash table entries are stored into 'des' that - * points to an array of dictEntry pointers. The array must have room for - * at least 'count' elements, that is the argument we pass to the function - * to tell how many random elements we need. - * - * The function returns the number of items stored into 'des', that may - * be less than 'count' if the hash table has less than 'count' elements - * inside, or if not enough elements were found in a reasonable amount of - * steps. - * - * Note that this function is not suitable when you need a good distribution - * of the returned items, but only when you need to "sample" a given number - * of continuous elements to run some kind of algorithm or to produce - * statistics. However the function is much faster than dictGetRandomKey() - * at producing N elements. */ -unsigned int dictGetSomeKeys(dict *d, dictEntry **des, unsigned int count) { - unsigned long j; /* internal hash table id, 0 or 1. */ - unsigned long tables; /* 1 or 2 tables? */ - unsigned long stored = 0, maxsizemask; - unsigned long maxsteps; - - if (dictSize(d) < count) count = dictSize(d); - maxsteps = count*10; - - /* Try to do a rehashing work proportional to 'count'. */ - for (j = 0; j < count; j++) { - if (dictIsRehashing(d)) - _dictRehashStep(d); - else - break; - } - - tables = dictIsRehashing(d) ? 2 : 1; - maxsizemask = d->ht[0].sizemask; - if (tables > 1 && maxsizemask < d->ht[1].sizemask) - maxsizemask = d->ht[1].sizemask; - - /* Pick a random point inside the larger table. */ - unsigned long i = random() & maxsizemask; - unsigned long emptylen = 0; /* Continuous empty entries so far. */ - while(stored < count && maxsteps--) { - for (j = 0; j < tables; j++) { - /* Invariant of the dict.c rehashing: up to the indexes already - * visited in ht[0] during the rehashing, there are no populated - * buckets, so we can skip ht[0] for indexes between 0 and idx-1. */ - if (tables == 2 && j == 0 && i < (unsigned long) d->rehashidx) { - /* Moreover, if we are currently out of range in the second - * table, there will be no elements in both tables up to - * the current rehashing index, so we jump if possible. - * (this happens when going from big to small table). */ - if (i >= d->ht[1].size) i = d->rehashidx; - continue; - } - if (i >= d->ht[j].size) continue; /* Out of range for this table. */ - dictEntry *he = d->ht[j].table[i]; - - /* Count contiguous empty buckets, and jump to other - * locations if they reach 'count' (with a minimum of 5). */ - if (he == NULL) { - emptylen++; - if (emptylen >= 5 && emptylen > count) { - i = random() & maxsizemask; - emptylen = 0; - } - } else { - emptylen = 0; - while (he) { - /* Collect all the elements of the buckets found non - * empty while iterating. */ - *des = he; - des++; - he = he->next; - stored++; - if (stored == count) return stored; - } - } - } - i = (i+1) & maxsizemask; - } - return stored; -} - -/* Function to reverse bits. Algorithm from: - * http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel */ -static unsigned long rev(unsigned long v) { - unsigned long s = 8 * sizeof(v); // bit size; must be power of 2 - unsigned long mask = ~0; - while ((s >>= 1) > 0) { - mask ^= (mask << s); - v = ((v >> s) & mask) | ((v << s) & ~mask); - } - return v; -} - -/* dictScan() is used to iterate over the elements of a dictionary. - * - * Iterating works the following way: - * - * 1) Initially you call the function using a cursor (v) value of 0. - * 2) The function performs one step of the iteration, and returns the - * new cursor value you must use in the next call. - * 3) When the returned cursor is 0, the iteration is complete. - * - * The function guarantees all elements present in the - * dictionary get returned between the start and end of the iteration. - * However it is possible some elements get returned multiple times. - * - * For every element returned, the callback argument 'fn' is - * called with 'privdata' as first argument and the dictionary entry - * 'de' as second argument. - * - * HOW IT WORKS. - * - * The iteration algorithm was designed by Pieter Noordhuis. - * The main idea is to increment a cursor starting from the higher order - * bits. That is, instead of incrementing the cursor normally, the bits - * of the cursor are reversed, then the cursor is incremented, and finally - * the bits are reversed again. - * - * This strategy is needed because the hash table may be resized between - * iteration calls. - * - * dict.c hash tables are always power of two in size, and they - * use chaining, so the position of an element in a given table is given - * by computing the bitwise AND between Hash(key) and SIZE-1 - * (where SIZE-1 is always the mask that is equivalent to taking the rest - * of the division between the Hash of the key and SIZE). - * - * For example if the current hash table size is 16, the mask is - * (in binary) 1111. The position of a key in the hash table will always be - * the last four bits of the hash output, and so forth. - * - * WHAT HAPPENS IF THE TABLE CHANGES IN SIZE? - * - * If the hash table grows, elements can go anywhere in one multiple of - * the old bucket: for example let's say we already iterated with - * a 4 bit cursor 1100 (the mask is 1111 because hash table size = 16). - * - * If the hash table will be resized to 64 elements, then the new mask will - * be 111111. The new buckets you obtain by substituting in ??1100 - * with either 0 or 1 can be targeted only by keys we already visited - * when scanning the bucket 1100 in the smaller hash table. - * - * By iterating the higher bits first, because of the inverted counter, the - * cursor does not need to restart if the table size gets bigger. It will - * continue iterating using cursors without '1100' at the end, and also - * without any other combination of the final 4 bits already explored. - * - * Similarly when the table size shrinks over time, for example going from - * 16 to 8, if a combination of the lower three bits (the mask for size 8 - * is 111) were already completely explored, it would not be visited again - * because we are sure we tried, for example, both 0111 and 1111 (all the - * variations of the higher bit) so we don't need to test it again. - * - * WAIT... YOU HAVE *TWO* TABLES DURING REHASHING! - * - * Yes, this is true, but we always iterate the smaller table first, then - * we test all the expansions of the current cursor into the larger - * table. For example if the current cursor is 101 and we also have a - * larger table of size 16, we also test (0)101 and (1)101 inside the larger - * table. This reduces the problem back to having only one table, where - * the larger one, if it exists, is just an expansion of the smaller one. - * - * LIMITATIONS - * - * This iterator is completely stateless, and this is a huge advantage, - * including no additional memory used. - * - * The disadvantages resulting from this design are: - * - * 1) It is possible we return elements more than once. However this is usually - * easy to deal with in the application level. - * 2) The iterator must return multiple elements per call, as it needs to always - * return all the keys chained in a given bucket, and all the expansions, so - * we are sure we don't miss keys moving during rehashing. - * 3) The reverse cursor is somewhat hard to understand at first, but this - * comment is supposed to help. - */ -unsigned long dictScan(dict *d, - unsigned long v, - dictScanFunction *fn, - dictScanBucketFunction* bucketfn, - void *privdata) -{ - dictht *t0, *t1; - const dictEntry *de, *next; - unsigned long m0, m1; - - if (dictSize(d) == 0) return 0; - - if (!dictIsRehashing(d)) { - t0 = &(d->ht[0]); - m0 = t0->sizemask; - - /* Emit entries at cursor */ - if (bucketfn) bucketfn(privdata, &t0->table[v & m0]); - de = t0->table[v & m0]; - while (de) { - next = de->next; - fn(privdata, de); - de = next; - } - - /* Set unmasked bits so incrementing the reversed cursor - * operates on the masked bits */ - v |= ~m0; - - /* Increment the reverse cursor */ - v = rev(v); - v++; - v = rev(v); - - } else { - t0 = &d->ht[0]; - t1 = &d->ht[1]; - - /* Make sure t0 is the smaller and t1 is the bigger table */ - if (t0->size > t1->size) { - t0 = &d->ht[1]; - t1 = &d->ht[0]; - } - - m0 = t0->sizemask; - m1 = t1->sizemask; - - /* Emit entries at cursor */ - if (bucketfn) bucketfn(privdata, &t0->table[v & m0]); - de = t0->table[v & m0]; - while (de) { - next = de->next; - fn(privdata, de); - de = next; - } - - /* Iterate over indices in larger table that are the expansion - * of the index pointed to by the cursor in the smaller table */ - do { - /* Emit entries at cursor */ - if (bucketfn) bucketfn(privdata, &t1->table[v & m1]); - de = t1->table[v & m1]; - while (de) { - next = de->next; - fn(privdata, de); - de = next; - } - - /* Increment the reverse cursor not covered by the smaller mask.*/ - v |= ~m1; - v = rev(v); - v++; - v = rev(v); - - /* Continue while bits covered by mask difference is non-zero */ - } while (v & (m0 ^ m1)); - } - - return v; -} - -/* ------------------------- private functions ------------------------------ */ - -/* Expand the hash table if needed */ -static int _dictExpandIfNeeded(dict *d) -{ - /* Incremental rehashing already in progress. Return. */ - if (dictIsRehashing(d)) return DICT_OK; - - /* If the hash table is empty expand it to the initial size. */ - if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE); - - /* If we reached the 1:1 ratio, and we are allowed to resize the hash - * table (global setting) or we should avoid it but the ratio between - * elements/buckets is over the "safe" threshold, we resize doubling - * the number of buckets. */ - if (d->ht[0].used >= d->ht[0].size && - (dict_can_resize || - d->ht[0].used/d->ht[0].size > dict_force_resize_ratio)) - { - return dictExpand(d, d->ht[0].used*2); - } - return DICT_OK; -} - -/* Our hash table capability is a power of two */ -static unsigned long _dictNextPower(unsigned long size) -{ - unsigned long i = DICT_HT_INITIAL_SIZE; - - if (size >= LONG_MAX) return LONG_MAX + 1LU; - while(1) { - if (i >= size) - return i; - i *= 2; - } -} - -/* Returns the index of a free slot that can be populated with - * a hash entry for the given 'key'. - * If the key already exists, -1 is returned - * and the optional output parameter may be filled. - * - * Note that if we are in the process of rehashing the hash table, the - * index is always returned in the context of the second (new) hash table. */ -static long _dictKeyIndex(dict *d, const void *key, uint64_t hash, dictEntry **existing) -{ - unsigned long idx, table; - dictEntry *he; - if (existing) *existing = NULL; - - /* Expand the hash table if needed */ - if (_dictExpandIfNeeded(d) == DICT_ERR) - return -1; - for (table = 0; table <= 1; table++) { - idx = hash & d->ht[table].sizemask; - /* Search if this slot does not already contain the given key */ - he = d->ht[table].table[idx]; - while(he) { - if (key==he->key || dictCompareKeys(d, key, he->key)) { - if (existing) *existing = he; - return -1; - } - he = he->next; - } - if (!dictIsRehashing(d)) break; - } - return idx; -} - -void dictEmpty(dict *d, void(callback)(void*)) { - _dictClear(d,&d->ht[0],callback); - _dictClear(d,&d->ht[1],callback); - d->rehashidx = -1; - d->iterators = 0; -} - -void dictEnableResize(void) { - dict_can_resize = 1; -} - -void dictDisableResize(void) { - dict_can_resize = 0; -} - -uint64_t dictGetHash(dict *d, const void *key) { - return dictHashKey(d, key); -} - -/* Finds the dictEntry reference by using pointer and pre-calculated hash. - * oldkey is a dead pointer and should not be accessed. - * the hash value should be provided using dictGetHash. - * no string / key comparison is performed. - * return value is the reference to the dictEntry if found, or NULL if not found. */ -dictEntry **dictFindEntryRefByPtrAndHash(dict *d, const void *oldptr, uint64_t hash) { - dictEntry *he, **heref; - unsigned long idx, table; - - if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */ - for (table = 0; table <= 1; table++) { - idx = hash & d->ht[table].sizemask; - heref = &d->ht[table].table[idx]; - he = *heref; - while(he) { - if (oldptr==he->key) - return heref; - heref = &he->next; - he = *heref; - } - if (!dictIsRehashing(d)) return NULL; - } - return NULL; -} - -/* ------------------------------- Debugging ---------------------------------*/ - -#define DICT_STATS_VECTLEN 50 -size_t _dictGetStatsHt(char *buf, size_t bufsize, dictht *ht, int tableid) { - unsigned long i, slots = 0, chainlen, maxchainlen = 0; - unsigned long totchainlen = 0; - unsigned long clvector[DICT_STATS_VECTLEN]; - size_t l = 0; - - if (ht->used == 0) { - return snprintf(buf,bufsize, - "No stats available for empty dictionaries\n"); - } - - /* Compute stats. */ - for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0; - for (i = 0; i < ht->size; i++) { - dictEntry *he; - - if (ht->table[i] == NULL) { - clvector[0]++; - continue; - } - slots++; - /* For each hash entry on this slot... */ - chainlen = 0; - he = ht->table[i]; - while(he) { - chainlen++; - he = he->next; - } - clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++; - if (chainlen > maxchainlen) maxchainlen = chainlen; - totchainlen += chainlen; - } - - /* Generate human readable stats. */ - l += snprintf(buf+l,bufsize-l, - "Hash table %d stats (%s):\n" - " table size: %ld\n" - " number of elements: %ld\n" - " different slots: %ld\n" - " max chain length: %ld\n" - " avg chain length (counted): %.02f\n" - " avg chain length (computed): %.02f\n" - " Chain length distribution:\n", - tableid, (tableid == 0) ? "main hash table" : "rehashing target", - ht->size, ht->used, slots, maxchainlen, - (float)totchainlen/slots, (float)ht->used/slots); - - for (i = 0; i < DICT_STATS_VECTLEN-1; i++) { - if (clvector[i] == 0) continue; - if (l >= bufsize) break; - l += snprintf(buf+l,bufsize-l, - " %s%ld: %ld (%.02f%%)\n", - (i == DICT_STATS_VECTLEN-1)?">= ":"", - i, clvector[i], ((float)clvector[i]/ht->size)*100); - } - - /* Unlike snprintf(), teturn the number of characters actually written. */ - if (bufsize) buf[bufsize-1] = '\0'; - return strlen(buf); -} - -void dictGetStats(char *buf, size_t bufsize, dict *d) { - size_t l; - char *orig_buf = buf; - size_t orig_bufsize = bufsize; - - l = _dictGetStatsHt(buf,bufsize,&d->ht[0],0); - buf += l; - bufsize -= l; - if (dictIsRehashing(d) && bufsize > 0) { - _dictGetStatsHt(buf,bufsize,&d->ht[1],1); - } - /* Make sure there is a NULL term at the end. */ - if (orig_bufsize) orig_buf[orig_bufsize-1] = '\0'; -} - -/* ------------------------------- Benchmark ---------------------------------*/ - -#ifdef DICT_BENCHMARK_MAIN - -#include "sds.h" - -uint64_t hashCallback(const void *key) { - return dictGenHashFunction((unsigned char*)key, sdslen((char*)key)); -} - -int compareCallback(void *privdata, const void *key1, const void *key2) { - int l1,l2; - DICT_NOTUSED(privdata); - - l1 = sdslen((sds)key1); - l2 = sdslen((sds)key2); - if (l1 != l2) return 0; - return memcmp(key1, key2, l1) == 0; -} - -void freeCallback(void *privdata, void *val) { - DICT_NOTUSED(privdata); - - sdsfree(val); -} - -dictType BenchmarkDictType = { - hashCallback, - NULL, - NULL, - compareCallback, - freeCallback, - NULL -}; - -#define start_benchmark() start = timeInMilliseconds() -#define end_benchmark(msg) do { \ - elapsed = timeInMilliseconds()-start; \ - printf(msg ": %ld items in %lld ms\n", count, elapsed); \ -} while(0); - -/* dict-benchmark [count] */ -int main(int argc, char **argv) { - long j; - long long start, elapsed; - dict *dict = dictCreate(&BenchmarkDictType,NULL); - long count = 0; - - if (argc == 2) { - count = strtol(argv[1],NULL,10); - } else { - count = 5000000; - } - - start_benchmark(); - for (j = 0; j < count; j++) { - int retval = dictAdd(dict,sdsfromlonglong(j),(void*)j); - assert(retval == DICT_OK); - } - end_benchmark("Inserting"); - assert((long)dictSize(dict) == count); - - /* Wait for rehashing. */ - while (dictIsRehashing(dict)) { - dictRehashMilliseconds(dict,100); - } - - start_benchmark(); - for (j = 0; j < count; j++) { - sds key = sdsfromlonglong(j); - dictEntry *de = dictFind(dict,key); - assert(de != NULL); - sdsfree(key); - } - end_benchmark("Linear access of existing elements"); - - start_benchmark(); - for (j = 0; j < count; j++) { - sds key = sdsfromlonglong(j); - dictEntry *de = dictFind(dict,key); - assert(de != NULL); - sdsfree(key); - } - end_benchmark("Linear access of existing elements (2nd round)"); - - start_benchmark(); - for (j = 0; j < count; j++) { - sds key = sdsfromlonglong(rand() % count); - dictEntry *de = dictFind(dict,key); - assert(de != NULL); - sdsfree(key); - } - end_benchmark("Random access of existing elements"); - - start_benchmark(); - for (j = 0; j < count; j++) { - sds key = sdsfromlonglong(rand() % count); - key[0] = 'X'; - dictEntry *de = dictFind(dict,key); - assert(de == NULL); - sdsfree(key); - } - end_benchmark("Accessing missing"); - - start_benchmark(); - for (j = 0; j < count; j++) { - sds key = sdsfromlonglong(j); - int retval = dictDelete(dict,key); - assert(retval == DICT_OK); - key[0] += 17; /* Change first number to letter. */ - retval = dictAdd(dict,key,(void*)j); - assert(retval == DICT_OK); - } - end_benchmark("Removing and adding"); -} -#endif |