aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--src/likelihood.c7
-rw-r--r--src/muon.c7
-rw-r--r--src/optics.c63
-rw-r--r--src/optics.h2
4 files changed, 75 insertions, 4 deletions
diff --git a/src/likelihood.c b/src/likelihood.c
index 99258a9..000389b 100644
--- a/src/likelihood.c
+++ b/src/likelihood.c
@@ -146,7 +146,7 @@ double get_total_charge_approx(double T0, double *pos, double *dir, muon_energy
*
* `smax` is currently calculated as the point where the particle velocity
* drops to 0.8 times the speed of light. */
- double pmt_dir[3], tmp[3], R, cos_theta, x, z, s, a, b, beta, E, p, T, omega, cos_theta_cerenkov, sin_theta_cerenkov, n_d2o, n_h2o, sin_theta, E0, p0, beta0, f, cos_theta_pmt, absorption_length_h2o, absorption_length_d2o, l_h2o, l_d2o, wavelength0;
+ double pmt_dir[3], tmp[3], R, cos_theta, x, z, s, a, b, beta, E, p, T, omega, cos_theta_cerenkov, sin_theta_cerenkov, n_d2o, n_h2o, sin_theta, E0, p0, beta0, f, cos_theta_pmt, absorption_length_h2o, absorption_length_d2o, absorption_length_acrylic, l_h2o, l_d2o, l_acrylic, wavelength0;
/* Calculate beta at the start of the track. */
E0 = T0 + MUON_MASS;
@@ -247,13 +247,16 @@ double get_total_charge_approx(double T0, double *pos, double *dir, muon_energy
absorption_length_d2o = get_absorption_length_snoman_d2o(wavelength0);
absorption_length_h2o = get_absorption_length_snoman_h2o(wavelength0);
+ absorption_length_acrylic = get_weighted_absorption_length_snoman_acrylic();
get_path_length(tmp,pmts[i].pos,AV_RADIUS,&l_d2o,&l_h2o);
+ l_acrylic = AV_RADIUS_OUTER - AV_RADIUS_INNER;
+
/* Assume the particle is travelling at the speed of light. */
*t = s/SPEED_OF_LIGHT + l_d2o*n_d2o/SPEED_OF_LIGHT + l_h2o*n_h2o/SPEED_OF_LIGHT;
- return f*exp(-l_d2o/absorption_length_d2o-l_h2o/absorption_length_h2o)*n_d2o*x*beta0*prob*(1/sin_theta)*omega*(erf((a+b*(smax-s)+n_d2o*(smax-z)*beta0)/frac) + erf((-a+b*s+n_d2o*z*beta0)/frac))/(b+n_d2o*beta0)/(4*M_PI);
+ return f*exp(-l_d2o/absorption_length_d2o-l_h2o/absorption_length_h2o-l_acrylic/absorption_length_acrylic)*n_d2o*x*beta0*prob*(1/sin_theta)*omega*(erf((a+b*(smax-s)+n_d2o*(smax-z)*beta0)/frac) + erf((-a+b*s+n_d2o*z*beta0)/frac))/(b+n_d2o*beta0)/(4*M_PI);
}
typedef struct betaRootParams {
diff --git a/src/muon.c b/src/muon.c
index 09f1dd1..575158b 100644
--- a/src/muon.c
+++ b/src/muon.c
@@ -258,7 +258,7 @@ double get_dEdx(double T, double rho)
double get_expected_charge(double x, double T, double theta0, double *pos, double *dir, double *pmt_pos, double *pmt_normal, double r)
{
- double pmt_dir[3], cos_theta, n, wavelength0, omega, E, p, beta, z, R, f, cos_theta_pmt, absorption_length_h2o, absorption_length_d2o, l_h2o, l_d2o;
+ double pmt_dir[3], cos_theta, n, wavelength0, omega, E, p, beta, z, R, f, cos_theta_pmt, absorption_length_h2o, absorption_length_d2o, absorption_length_acrylic, l_h2o, l_d2o, l_acrylic;
z = 1.0;
@@ -298,8 +298,11 @@ double get_expected_charge(double x, double T, double theta0, double *pos, doubl
absorption_length_d2o = get_weighted_absorption_length_snoman_d2o();
absorption_length_h2o = get_weighted_absorption_length_snoman_h2o();
+ absorption_length_acrylic = get_weighted_absorption_length_snoman_acrylic();
get_path_length(pos,pmt_pos,AV_RADIUS,&l_d2o,&l_h2o);
- return f*exp(-l_d2o/absorption_length_d2o-l_h2o/absorption_length_h2o)*omega*FINE_STRUCTURE_CONSTANT*z*z*(1-(1/(beta*beta*n*n)))*get_probability(beta, cos_theta, theta0);
+ l_acrylic = AV_RADIUS_OUTER - AV_RADIUS_INNER;
+
+ return f*exp(-l_d2o/absorption_length_d2o-l_h2o/absorption_length_h2o-l_acrylic/absorption_length_acrylic)*omega*FINE_STRUCTURE_CONSTANT*z*z*(1-(1/(beta*beta*n*n)))*get_probability(beta, cos_theta, theta0);
}
diff --git a/src/optics.c b/src/optics.c
index 57c9d57..5f01089 100644
--- a/src/optics.c
+++ b/src/optics.c
@@ -24,6 +24,10 @@ static double absorption_coefficient_h2o[7] = {1e-5, 1e-5, 1.3e-5, 6.0e-5, 2.0e-
static double absorption_coefficient_d2o_wavelengths[7] = {254.0, 313.0, 366.0, 406.0, 436.0, 548.0, 578.0};
static double absorption_coefficient_d2o[7] = {1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 1e-5, 1e-5};
+/* From prod/media.dat for Acrylic (good). */
+static double absorption_coefficient_acrylic_wavelengths[10] = {300.0, 310.0, 320.0, 330.0, 340.0, 350.0, 360.0, 380.0, 400.0, 450.0};
+static double absorption_coefficient_acrylic[10] = {0.3641, 0.0966, 0.0667, 0.049, 0.035, 0.0261, 0.0194, 0.0115, 0.0086, 0.0071};
+
static int initialized = 0;
/* D2O absorption length weighted by the Cerenkov spectrum and the quantum
@@ -32,6 +36,10 @@ static double absorption_length_d2o_weighted = 0.0;
/* H2O absorption length weighted by the Cerenkov spectrum and the quantum
* efficiency. */
static double absorption_length_h2o_weighted = 0.0;
+/* Acrylic absorption length weighted by the Cerenkov spectrum and the quantum
+ * efficiency. */
+static double absorption_length_acrylic_weighted = 0.0;
+
/* From Table 4 in the paper. */
static double A0 = 0.243905091;
@@ -80,6 +88,17 @@ static double gsl_absorption_length_snoman_h2o(double wavelength, void *params)
return qe*get_absorption_length_snoman_h2o(wavelength)/pow(wavelength,2);
}
+static double gsl_absorption_length_snoman_acrylic(double wavelength, void *params)
+{
+ /* Returns the absorption length in acrylic weighted by the quantum
+ * efficiency and the Cerenkov spectrum. */
+ double qe;
+
+ qe = get_quantum_efficiency(wavelength);
+
+ return qe*get_absorption_length_snoman_acrylic(wavelength)/pow(wavelength,2);
+}
+
static double gsl_cerenkov(double wavelength, void *params)
{
/* Returns the quantum efficiency multiplied by the Cerenkov spectrum. */
@@ -133,6 +152,17 @@ int optics_init(void)
exit(1);
}
+ F.function = &gsl_absorption_length_snoman_acrylic;
+
+ status = gsl_integration_cquad(&F, 200, 800, 0, 1e-2, w, &result, &error, &nevals);
+
+ absorption_length_acrylic_weighted = result/norm;
+
+ if (status) {
+ fprintf(stderr, "error integrating cerenkov distribution: %s\n", gsl_strerror(status));
+ exit(1);
+ }
+
gsl_integration_cquad_workspace_free(w);
initialized = 1;
@@ -206,6 +236,39 @@ double get_absorption_length_snoman_d2o(double wavelength)
return 1.0/gsl_spline_eval(spline, wavelength, acc);
}
+double get_weighted_absorption_length_snoman_acrylic(void)
+{
+ /* Returns the weighted absorption length in acrylic in cm. */
+
+ if (!initialized) {
+ fprintf(stderr, "weighted absorption length hasn't been initialized!\n");
+ exit(1);
+ }
+
+ return absorption_length_acrylic_weighted;
+}
+
+double get_absorption_length_snoman_acrylic(double wavelength)
+{
+ /* Returns the absorption length in acrylic in cm. */
+ static gsl_spline *spline;
+ static gsl_interp_accel *acc;
+
+ if (!spline) {
+ spline = gsl_spline_alloc(gsl_interp_linear, LEN(absorption_coefficient_acrylic_wavelengths));
+ gsl_spline_init(spline, absorption_coefficient_acrylic_wavelengths, absorption_coefficient_acrylic, LEN(absorption_coefficient_acrylic_wavelengths));
+ acc = gsl_interp_accel_alloc();
+ }
+
+ if (wavelength < absorption_coefficient_acrylic_wavelengths[0])
+ wavelength = absorption_coefficient_acrylic_wavelengths[0];
+
+ if (wavelength > absorption_coefficient_acrylic_wavelengths[LEN(absorption_coefficient_acrylic_wavelengths)-1])
+ wavelength = absorption_coefficient_acrylic_wavelengths[LEN(absorption_coefficient_acrylic_wavelengths)-1];
+
+ return 1.0/gsl_spline_eval(spline, wavelength, acc);
+}
+
double get_index(double p, double wavelength, double T)
{
/* Returns the index of refraction of pure water for a given density,
diff --git a/src/optics.h b/src/optics.h
index fdeefdd..06b89ca 100644
--- a/src/optics.h
+++ b/src/optics.h
@@ -6,6 +6,8 @@ double get_weighted_absorption_length_snoman_h2o(void);
double get_absorption_length_snoman_h2o(double wavelength);
double get_weighted_absorption_length_snoman_d2o(void);
double get_absorption_length_snoman_d2o(double wavelength);
+double get_weighted_absorption_length_snoman_acrylic(void);
+double get_absorption_length_snoman_acrylic(double wavelength);
double get_index(double p, double wavelength, double T);
double get_index_snoman_h2o(double wavelength);
double get_index_snoman_d2o(double wavelength);