import unittest import numpy as np from chroma.geometry import Solid, Geometry from chroma.make import box from chroma.sim import Simulation from chroma.optics import water_wcsim from chroma.event import Photons import histogram from histogram.root import rootify import ROOT ROOT.gROOT.SetBatch(1) class TestRayleigh(unittest.TestCase): def setUp(self): self.cube = Geometry() self.cube.add_solid(Solid(box(100,100,100), water_wcsim, water_wcsim)) self.cube.pmtids = [0] self.sim = Simulation(self.cube, water_wcsim, bvh_bits=4, geant4_processes=0, use_cache=False) nphotons = 100000 positions = np.tile([0,0,0], (nphotons,1)).astype(np.float32) directions = np.tile([0,0,1], (nphotons,1)).astype(np.float32) polarizations = np.zeros_like(positions) phi = np.random.uniform(0, 2*np.pi, nphotons).astype(np.float32) polarizations[:,0] = np.cos(phi) polarizations[:,1] = np.sin(phi) times = np.zeros(nphotons, dtype=np.float32) wavelengths = np.empty(nphotons, np.float32) wavelengths.fill(400.0) self.photons = Photons(positions=positions, directions=directions, polarizations=polarizations, times=times, wavelengths=wavelengths) def testAngularDistributionPolarized(self): # Fully polarized photons self.photons.polarizations[:] = [1.0, 0.0, 0.0] photon_stop = self.sim.propagate_photons(self.photons, max_steps=1) aborted = (photon_stop.histories & (1 << 31)) > 0 self.assertFalse(aborted.any()) # Compute the dot product between initial and final directions rayleigh_scatters = (photon_stop.histories & (1 << 4)) > 0 cos_scatter = (self.photons.directions[rayleigh_scatters] * photon_stop.directions[rayleigh_scatters]).sum(axis=1) theta_scatter = np.arccos(cos_scatter) h = histogram.Histogram(bins=100, range=(0, np.pi)) h.fill(theta_scatter) h = rootify(h) # The functional form for polarized light should be (1 + \cos^2 \theta)\sin \theta # according to GEANT4 physics reference manual f = ROOT.TF1("pol_func", "[0]*(1+cos(x)**2)*sin(x)", 0, np.pi) h.Fit(f) self.assertGreater(f.GetProb(), 1e-3)